dc.contributor.author |
Doulamis, N |
en |
dc.contributor.author |
Doulamis, A |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T02:41:39Z |
|
dc.date.available |
2014-03-01T02:41:39Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30577 |
|
dc.subject |
Content Based Retrieval |
en |
dc.subject |
Relevance Feedback |
en |
dc.subject |
Satisfiability |
en |
dc.subject |
Neural Network |
en |
dc.title |
Nonlinear relevance feedback: improving the performance of content-based retrieval systems |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICME.2000.869608 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICME.2000.869608 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
In this paper, a non-linear relevance feedback mechanism is proposed for increasing the performance and the reliability of content-based retrieval systems. In particular, the human is considered as part of the retrieval process in an interactive framework, who evaluates the results provided by the system so that the system automatically updated its performance based on the users' feedback. An adaptively |
en |
heal.journalName |
International Conference on Multimedia Computing and Systems/International Conference on Multimedia and Expo |
en |
dc.identifier.doi |
10.1109/ICME.2000.869608 |
en |