dc.contributor.author |
Doulamis, A |
en |
dc.contributor.author |
Doulamis, N |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T02:41:39Z |
|
dc.date.available |
2014-03-01T02:41:39Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30578 |
|
dc.subject |
Autoregressive Model |
en |
dc.subject |
Computer Simulation |
en |
dc.subject |
Experimental Study |
en |
dc.subject |
General Regression Neural Network |
en |
dc.subject |
Mean Square Error |
en |
dc.subject |
Traffic Model |
en |
dc.subject |
Feedforward Neural Network |
en |
dc.subject |
Neural Network |
en |
dc.subject |
Tapped Delay Line |
en |
dc.title |
Non Linear Traffic Modeling of VBR MPEG2 Video Sources |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICME.2000.871009 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICME.2000.871009 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
A neural network scheme is presented for modeling VBR MPEG-2 video sources. In particular, three nonlinear autoregressive models (NAR) are proposed to model the aggregate MPEG-2 video sequence, each of which corresponds to one of the three types of frames (I, P and B frames). Then, the optimal mean-squared error predictor of the NAR model is implemented using a feedforward |
en |
heal.journalName |
International Conference on Multimedia Computing and Systems/International Conference on Multimedia and Expo |
en |
dc.identifier.doi |
10.1109/ICME.2000.871009 |
en |