dc.contributor.author |
Korres, GN |
en |
dc.date.accessioned |
2014-03-01T02:41:39Z |
|
dc.date.available |
2014-03-01T02:41:39Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30584 |
|
dc.subject |
""Squared"" and ""Unsquared"" Measurements |
en |
dc.subject |
Critical measurements |
en |
dc.subject |
Flow islands |
en |
dc.subject |
Maximal observable island |
en |
dc.subject |
Positive definite matrix |
en |
dc.subject |
State Estimation |
en |
dc.subject.other |
Bad data processing |
en |
dc.subject.other |
Critical measurements |
en |
dc.subject.other |
Estimation problem |
en |
dc.subject.other |
Flow islands |
en |
dc.subject.other |
Gain matrices |
en |
dc.subject.other |
Hybrid state |
en |
dc.subject.other |
Injection measurement |
en |
dc.subject.other |
Maximal observable island |
en |
dc.subject.other |
Measurement system |
en |
dc.subject.other |
Numerically robust |
en |
dc.subject.other |
Observability analysis |
en |
dc.subject.other |
Positive definite |
en |
dc.subject.other |
Positive-definite matrices |
en |
dc.subject.other |
Storage requirements |
en |
dc.subject.other |
Weighted least squares approach |
en |
dc.subject.other |
Data processing |
en |
dc.subject.other |
State estimation |
en |
dc.subject.other |
Flow measurement |
en |
dc.title |
A hybrid state estimator based on measurement system decomposition |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/PTC.2001.964951 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/PTC.2001.964951 |
en |
heal.identifier.secondary |
964951 |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
This paper presents a flexible method for the solution of the State Estimation problem. The problem is formulated as a Weighted Least Squares (WLS) approach, where all the flow measurements and only a small number of selected non-redundant injection measurements are ""squared"" in the gain matrix, while the remaining injection measurements are maintained in ""unsquared"" form. The gain matrices are positive definite and can be easily factorized using well-known sparsity techniques. The method is numerically robust and reasonable in extra storage requirements. An observability analysis and bad data processing scheme are also proposed. The method is illustrated with the IEEE 14-bus system. © 2001 IEEE. |
en |
heal.journalName |
2001 IEEE Porto Power Tech Proceedings |
en |
dc.identifier.doi |
10.1109/PTC.2001.964951 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.spage |
434 |
en |
dc.identifier.epage |
439 |
en |