HEAL DSpace

Adaptive edge enhancement in SAR images. Training on the data vs. training on simulated data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dimou, A en
dc.contributor.author Jager, G en
dc.contributor.author Frangos, P en
dc.date.accessioned 2014-03-01T02:41:41Z
dc.date.available 2014-03-01T02:41:41Z
dc.date.issued 2001 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30597
dc.subject Artificial Neural Network en
dc.subject Edge Detection en
dc.subject Edge Enhancement en
dc.subject Sar Image en
dc.subject Supervised Classification en
dc.subject.other Adaptive filtering en
dc.subject.other Color image processing en
dc.subject.other Computer simulation en
dc.subject.other Data reduction en
dc.subject.other Edge detection en
dc.subject.other Image segmentation en
dc.subject.other Neural networks en
dc.subject.other Speckle en
dc.subject.other Synthetic aperture radar en
dc.subject.other Adaptive edge enhancement en
dc.subject.other Training on simulated data en
dc.subject.other Training on the data en
dc.subject.other Image enhancement en
dc.title Adaptive edge enhancement in SAR images. Training on the data vs. training on simulated data en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICIP.2001.959061 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICIP.2001.959061 en
heal.publicationDate 2001 en
heal.abstract Edge detection and edge enhancement in SAR images is, due to the speckle effect, not so easily achieved. Here we consider edge enhancement as classification problem, i.e. we segment an image in several edge classes and a no edge class. Thus supervised classification techniques become available. We proposed an artificial neural network approach and interpret the output as 'grade of being an edge pixel'. For training of the network we applied two training strategies: 1. Selection of training samples from the data in a supervised way and 2. Artificial creation of training samples based on speckle statistics using a speckle simulation algorithm. Both strategies are applied on a data set acquired by DLR's E-SAR in L-Band. The outputs of the edge enhancement process are compared among each other and with RoA edge detector. en
heal.journalName IEEE International Conference on Image Processing en
dc.identifier.doi 10.1109/ICIP.2001.959061 en
dc.identifier.volume 1 en
dc.identifier.spage 493 en
dc.identifier.epage 496 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής