dc.contributor.author |
Dimou, A |
en |
dc.contributor.author |
Jager, G |
en |
dc.contributor.author |
Frangos, P |
en |
dc.date.accessioned |
2014-03-01T02:41:41Z |
|
dc.date.available |
2014-03-01T02:41:41Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30597 |
|
dc.subject |
Artificial Neural Network |
en |
dc.subject |
Edge Detection |
en |
dc.subject |
Edge Enhancement |
en |
dc.subject |
Sar Image |
en |
dc.subject |
Supervised Classification |
en |
dc.subject.other |
Adaptive filtering |
en |
dc.subject.other |
Color image processing |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Data reduction |
en |
dc.subject.other |
Edge detection |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Speckle |
en |
dc.subject.other |
Synthetic aperture radar |
en |
dc.subject.other |
Adaptive edge enhancement |
en |
dc.subject.other |
Training on simulated data |
en |
dc.subject.other |
Training on the data |
en |
dc.subject.other |
Image enhancement |
en |
dc.title |
Adaptive edge enhancement in SAR images. Training on the data vs. training on simulated data |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICIP.2001.959061 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICIP.2001.959061 |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
Edge detection and edge enhancement in SAR images is, due to the speckle effect, not so easily achieved. Here we consider edge enhancement as classification problem, i.e. we segment an image in several edge classes and a no edge class. Thus supervised classification techniques become available. We proposed an artificial neural network approach and interpret the output as 'grade of being an edge pixel'. For training of the network we applied two training strategies: 1. Selection of training samples from the data in a supervised way and 2. Artificial creation of training samples based on speckle statistics using a speckle simulation algorithm. Both strategies are applied on a data set acquired by DLR's E-SAR in L-Band. The outputs of the edge enhancement process are compared among each other and with RoA edge detector. |
en |
heal.journalName |
IEEE International Conference on Image Processing |
en |
dc.identifier.doi |
10.1109/ICIP.2001.959061 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
493 |
en |
dc.identifier.epage |
496 |
en |