HEAL DSpace

Classification of hepatic lesions from CT images using texture features and neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gletsos, M en
dc.contributor.author Mougiakakou, SG en
dc.contributor.author Matsopoulos, GK en
dc.contributor.author Nikita, KS en
dc.contributor.author Nikita, AS en
dc.contributor.author Kelekis, D en
dc.date.accessioned 2014-03-01T02:41:46Z
dc.date.available 2014-03-01T02:41:46Z
dc.date.issued 2001 en
dc.identifier.issn 04549244 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30617
dc.subject Classification en
dc.subject Liver CT images en
dc.subject Neural network en
dc.subject Sequential floating forward selection en
dc.subject Texture features en
dc.title Classification of hepatic lesions from CT images using texture features and neural networks en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEMBS.2001.1017353 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.2001.1017353 en
heal.publicationDate 2001 en
heal.abstract In this paper a computer-aided diagnostic system for the classification of hepatic lesions from Computed Tomography (CT) images is presented. Regions of Interest (ROI's) taken from non-enhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas (a total of 147 samples), have been used as input to the system. The system consists of two levels: the feature extraction and the classification levels. The feature extraction level calculates the average grey scale and 48 texture characteristics, which are derived from the spatial grey-level co-occurrence matrices, obtained from the ROI's. The classifier level consists of three sequentially placed feed-forward Neural Networks (NN's), which are activated sequentially. The first NN classifies into normal or pathological liver regions. The pathological liver regions are classified by the second NN into cysts or ""other disease"". The third NN classifies ""other disease"" into hemangiomas and hepatocellular carcinomas. In order to enhance the performance of the classifier and improve the execution time, the dimensionality of the initial feature vector has been reduced using the sequential forward floating selection method for each individual NN input vector. A total classification rate of 98% has been achieved. en
heal.journalName Annual Reports of the Research Reactor Institute, Kyoto University en
dc.identifier.doi 10.1109/IEMBS.2001.1017353 en
dc.identifier.volume 3 en
dc.identifier.spage 2748 en
dc.identifier.epage 2751 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής