HEAL DSpace

Development and application of instrumental methods for strain analysis of semiconductor layers and devices

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadimitriou, D en
dc.contributor.author Liarokapis, E en
dc.contributor.author Richter, W en
dc.date.accessioned 2014-03-01T02:41:51Z
dc.date.available 2014-03-01T02:41:51Z
dc.date.issued 2001 en
dc.identifier.issn 0026-3672 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30627
dc.subject Semiconductor devices en
dc.subject Semiconductor layers en
dc.subject Strain analysis en
dc.subject.classification Chemistry, Analytical en
dc.subject.other germanium en
dc.subject.other silicon en
dc.subject.other accuracy en
dc.subject.other chemical structure en
dc.subject.other conference paper en
dc.subject.other device en
dc.subject.other optical instrumentation en
dc.subject.other Raman spectrometry en
dc.subject.other reflectometry en
dc.subject.other semiconductor en
dc.subject.other spectroscopy en
dc.subject.other spectrum en
dc.subject.other structure analysis en
dc.title Development and application of instrumental methods for strain analysis of semiconductor layers and devices en
heal.type conferenceItem en
heal.identifier.primary 10.1007/s006040170048 en
heal.identifier.secondary http://dx.doi.org/10.1007/s006040170048 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract Strain effects on semiconductor layers were studied by means of optical spectroscopic techniques with a device developed especially for the study of layered structures and microstructures. Raman, modulated photoreflectance and reflectance anisotropy spectroscopy (RAS) were applied. Measurements were performed on elemental semiconductors (Si), semiconductor alloys (Si-Ge) and III-V semiconductor compounds (GaAs). By application of RAS, strains lower than 10(-4) could be resolved, which is at least one order of magnitude lower than those observable with Raman and modulated reflectance techniques. The RAS spectra of layers strained along either the [010] or [011] direction showed a derivative-like structure at El-gap energies, which increased linearly and very quickly with increasing strain. The dependence of this spectral feature on applied strain was used to evaluate strain-dependent effects. This behaviour strongly suggests that RAS can be applied for the optical characterisation of strain in semiconductor microstructures and devices, with a higher efficiency and accuracy than that achieved by previously established optical methods such as Raman and modulation spectroscopy. In addition, the compactness and ease of operation of the instrumentation of RAS provides considerable potential for in situ monitoring/control of semiconductor fabrication conditions. en
heal.publisher SPRINGER-VERLAG WIEN en
heal.journalName Mikrochimica Acta en
dc.identifier.doi 10.1007/s006040170048 en
dc.identifier.isi ISI:000169798600012 en
dc.identifier.volume 136 en
dc.identifier.issue 3-4 en
dc.identifier.spage 165 en
dc.identifier.epage 169 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής