HEAL DSpace

Heuristic optimization of OLAP queries in multidimensionally hierarchically clustered databases

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Theodoratos, D en
dc.contributor.author Tsois, A en
dc.date.accessioned 2014-03-01T02:41:53Z
dc.date.available 2014-03-01T02:41:53Z
dc.date.issued 2001 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30656
dc.subject Heuristic Optimization en
dc.subject Hierarchical Clustering en
dc.subject Indexation en
dc.subject Indexing Method en
dc.subject Multidimensional Access Method en
dc.subject Multidimensional Database en
dc.subject On Line Analytical Processing en
dc.subject Relational Database Management System en
dc.subject.other Data flow analysis en
dc.subject.other Decision support systems en
dc.subject.other Heuristic methods en
dc.subject.other Hierarchical systems en
dc.subject.other Optimization en
dc.subject.other Relational database systems en
dc.subject.other Response time (computer systems) en
dc.subject.other Hierarchical clustered database en
dc.subject.other Multidimensional clustered database en
dc.subject.other Online analysitical processing en
dc.subject.other Query processor en
dc.subject.other Query languages en
dc.title Heuristic optimization of OLAP queries in multidimensionally hierarchically clustered databases en
heal.type conferenceItem en
heal.identifier.primary 10.1145/512236.512243 en
heal.identifier.secondary http://dx.doi.org/10.1145/512236.512243 en
heal.publicationDate 2001 en
heal.abstract On-Line Analytical Processing (OLAP) is a technology that encompasses applications requiring a multidimensional and hierarchical view of data. OLAP applications often require fast response time to complex grouping/aggregation queries on enormous quantities of data. Commercial relational database management systems use mainly multiple one-dimensional indexes to process OLAP queries that restrict multiple dimensions. However, in many cases, multidimensional access methods outperform one-dimensional indexing methods. We present an architecture for multidimensional databases that are clustered with respect to multiple hierarchical dimensions. It is based on the star schema and is called CSB star. Then, we focus on heuristically optimizing OLAP queries over this schema using multidimensional access methods. Users can still formulate their queries over a traditional star schema, which are then rewritten by the query processor over the CSB star. We exploit the different clustering features of the CSB star to efficiently process a class of typical OLAP queries. We detect special cases where the construction of an evaluation plan can be simplified and we discuss improvements of our technique. en
heal.journalName ACM International Workshop on Data Warehousing and OLAP (DOLAP) en
dc.identifier.doi 10.1145/512236.512243 en
dc.identifier.spage 48 en
dc.identifier.epage 55 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής