HEAL DSpace

Neural networks applications for the prediction of propagation path loss in urban environments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Popescu, I en
dc.contributor.author Nafornita, I en
dc.contributor.author Constantinou, P en
dc.contributor.author Kanatas, A en
dc.contributor.author Moraitis, N en
dc.date.accessioned 2014-03-01T02:41:56Z
dc.date.available 2014-03-01T02:41:56Z
dc.date.issued 2001 en
dc.identifier.issn 07400551 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30686
dc.subject Neural Model en
dc.subject Neural Network Application en
dc.subject Path Loss en
dc.subject Regression Model en
dc.subject Root Mean Square Error en
dc.subject Standard Deviation en
dc.subject Urban Environment en
dc.subject Line of Sight en
dc.subject Mean Error en
dc.subject Non Line of Sight en
dc.subject Neural Network en
dc.subject.other Algorithms en
dc.subject.other Computer simulation en
dc.subject.other Conformal mapping en
dc.subject.other Error analysis en
dc.subject.other Function evaluation en
dc.subject.other Mobile radio systems en
dc.subject.other Multilayer neural networks en
dc.subject.other Radial basis function networks en
dc.subject.other Radio transmission en
dc.subject.other Regression analysis en
dc.subject.other Propagation path loss en
dc.subject.other Root mean square error en
dc.subject.other Single regression model en
dc.subject.other Urban environments en
dc.subject.other Signal filtering and prediction en
dc.title Neural networks applications for the prediction of propagation path loss in urban environments en
heal.type conferenceItem en
heal.identifier.primary 10.1109/VETECS.2001.944870 en
heal.identifier.secondary http://dx.doi.org/10.1109/VETECS.2001.944870 en
heal.publicationDate 2001 en
heal.abstract This paper presents neural network based models for the prediction of propagation path loss in urban environment. The neural networks are designed separately for line-of-sight (LOS) and non-line-of-sight (NLOS) cases. The performance of the neural model is compared to that of the COST231-Walfisch-Ikegami model, the Walfisch-Bertoni model and the single regression model, based on the absolute mean error, standard deviation and the root mean squared error between predicted and measured values. en
heal.journalName IEEE Vehicular Technology Conference en
dc.identifier.doi 10.1109/VETECS.2001.944870 en
dc.identifier.volume 1 en
dc.identifier.issue 53ND en
dc.identifier.spage 387 en
dc.identifier.epage 391 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής