dc.contributor.author |
Popescu, I |
en |
dc.contributor.author |
Nafornita, I |
en |
dc.contributor.author |
Constantinou, P |
en |
dc.contributor.author |
Kanatas, A |
en |
dc.contributor.author |
Moraitis, N |
en |
dc.date.accessioned |
2014-03-01T02:41:56Z |
|
dc.date.available |
2014-03-01T02:41:56Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
07400551 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30686 |
|
dc.subject |
Neural Model |
en |
dc.subject |
Neural Network Application |
en |
dc.subject |
Path Loss |
en |
dc.subject |
Regression Model |
en |
dc.subject |
Root Mean Square Error |
en |
dc.subject |
Standard Deviation |
en |
dc.subject |
Urban Environment |
en |
dc.subject |
Line of Sight |
en |
dc.subject |
Mean Error |
en |
dc.subject |
Non Line of Sight |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Conformal mapping |
en |
dc.subject.other |
Error analysis |
en |
dc.subject.other |
Function evaluation |
en |
dc.subject.other |
Mobile radio systems |
en |
dc.subject.other |
Multilayer neural networks |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Radio transmission |
en |
dc.subject.other |
Regression analysis |
en |
dc.subject.other |
Propagation path loss |
en |
dc.subject.other |
Root mean square error |
en |
dc.subject.other |
Single regression model |
en |
dc.subject.other |
Urban environments |
en |
dc.subject.other |
Signal filtering and prediction |
en |
dc.title |
Neural networks applications for the prediction of propagation path loss in urban environments |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/VETECS.2001.944870 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/VETECS.2001.944870 |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
This paper presents neural network based models for the prediction of propagation path loss in urban environment. The neural networks are designed separately for line-of-sight (LOS) and non-line-of-sight (NLOS) cases. The performance of the neural model is compared to that of the COST231-Walfisch-Ikegami model, the Walfisch-Bertoni model and the single regression model, based on the absolute mean error, standard deviation and the root mean squared error between predicted and measured values. |
en |
heal.journalName |
IEEE Vehicular Technology Conference |
en |
dc.identifier.doi |
10.1109/VETECS.2001.944870 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.issue |
53ND |
en |
dc.identifier.spage |
387 |
en |
dc.identifier.epage |
391 |
en |