HEAL DSpace

Nonholonomic stabilization with collision avoidance for mobile robots

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tanner, HG en
dc.contributor.author Loizou, S en
dc.contributor.author Kyriakopoulos, KJ en
dc.date.accessioned 2014-03-01T02:41:56Z
dc.date.available 2014-03-01T02:41:56Z
dc.date.issued 2001 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30688
dc.subject Collision Avoidance en
dc.subject Global Asymptotic Stability en
dc.subject lyapunov function en
dc.subject Mobile Robot en
dc.subject Obstacle Avoidance en
dc.subject Potential Field en
dc.subject State Feedback en
dc.subject.other Asymptotic stability en
dc.subject.other Collision avoidance en
dc.subject.other Computer simulation en
dc.subject.other Feedback en
dc.subject.other Lyapunov methods en
dc.subject.other Motion planning en
dc.subject.other Navigation en
dc.subject.other Lyapunov functions en
dc.subject.other Nonholonomic stabilization en
dc.subject.other Mobile robots en
dc.title Nonholonomic stabilization with collision avoidance for mobile robots en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IROS.2001.977149 en
heal.identifier.secondary http://dx.doi.org/10.1109/IROS.2001.977149 en
heal.publicationDate 2001 en
heal.abstract This paper presents a motion planner and nonholonomic controller for a mobile robot, with global collision avoidance and convergence properties. An appropriately designed (dipolar) potential field is combined with discontinuous state feedback. A new class of Lyapunov functions is introduced and used for nonholonomic navigation. The obstacle avoidance and global asymptotic stability properties are verified through simulations. en
heal.journalName IEEE International Conference on Intelligent Robots and Systems en
dc.identifier.doi 10.1109/IROS.2001.977149 en
dc.identifier.volume 3 en
dc.identifier.spage 1220 en
dc.identifier.epage 1225 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής