Phase shift near natural frequencies of non linear rods

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Georgiou, IT en
dc.date.accessioned 2014-03-01T02:41:57Z
dc.date.available 2014-03-01T02:41:57Z
dc.date.issued 2001 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30697
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0035791087&partnerID=40&md5=bd4b949935105ba856f7611dcbe38906 en
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0035791087&partnerID=40&md5=bd4b949935105ba856f7611dcbe38906 en
dc.subject.other Boundary conditions en
dc.subject.other Degrees of freedom (mechanics) en
dc.subject.other Dynamics en
dc.subject.other Equations of motion en
dc.subject.other Harmonic analysis en
dc.subject.other Mathematical models en
dc.subject.other Phase shift en
dc.subject.other Poisson ratio en
dc.subject.other Tensors en
dc.subject.other Geometric nonlinearity en
dc.subject.other Periodic attractor en
dc.subject.other Proper orthogonal decomposition en
dc.subject.other Quasi static frequency en
dc.subject.other Steady state dynamics en
dc.subject.other Natural frequencies en
dc.title Phase shift near natural frequencies of non linear rods en
heal.type conferenceItem en
heal.publicationDate 2001 en
heal.abstract We study the transient and steady state dynamics of a special class of motions of forced planar rods with exact geometric nonlinearity. The attractors of these motions are separated by a finite jump at a critical forcing frequency in an attractor diagram of the undistorted configuration generated by a quasi-static frequency sweep at fixed forcing amplitude. As the frequency of the forcing passes through this critical or jump frequency, the motion (trajectory) of the undistorted configuration changes basin of attraction. For forcing frequency slightly greater than the jump frequency, the response trajectories of the undistorted configuration pass near an unstable periodic attractor and undergo continuous phase shift while approaching a stable attractor. For forcing frequency slightly smaller than the jump frequency, the response trajectories of the undistorted configuration pass near the same unstable attractor and undergo no net phase angle when landing on the stable attractor that attracts them. The phase-shifting property reveals that the frequency at which the jump occurs is indeed a natural frequency of the nonlinear rod. en
heal.journalName Proceedings of the ASME Design Engineering Technical Conference en
dc.identifier.volume 6 C en
dc.identifier.spage 2429 en
dc.identifier.epage 2436 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record