dc.contributor.author |
Tanner, HG |
en |
dc.contributor.author |
Kyriakopoulos, KJ |
en |
dc.date.accessioned |
2014-03-01T02:41:57Z |
|
dc.date.available |
2014-03-01T02:41:57Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
10504729 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30702 |
|
dc.subject |
Computer Simulation |
en |
dc.subject |
Force Control |
en |
dc.subject |
Inverse Dynamics |
en |
dc.subject.other |
Reaction compensations |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Damping |
en |
dc.subject.other |
Manipulators |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Position control |
en |
dc.subject.other |
Force control |
en |
dc.title |
Position and force control by reaction compensation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ROBOT.2001.933229 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ROBOT.2001.933229 |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
The paper presents a new position/force controller, based on the philosophy of the parallel approach. The controller exploits the reaction compensation action of the inverse dynamics position controller and achieves superior transient performance. It incorporates a velocity dependent damping term. Stability is established and conditions for the control parameters are derived. Performance of the proposed controller is verified through computer simulations. |
en |
heal.journalName |
Proceedings - IEEE International Conference on Robotics and Automation |
en |
dc.identifier.doi |
10.1109/ROBOT.2001.933229 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.spage |
3926 |
en |
dc.identifier.epage |
3931 |
en |