HEAL DSpace

Short term load forecasting with Radial basis function network

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gontar, Z en
dc.contributor.author Hatziargyriou, N en
dc.date.accessioned 2014-03-01T02:41:59Z
dc.date.available 2014-03-01T02:41:59Z
dc.date.issued 2001 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30717
dc.subject Neural network en
dc.subject Radial Basis Function network en
dc.subject Short-Term Load Forecasting en
dc.subject.other Distribution companies en
dc.subject.other Gaussian basis functions en
dc.subject.other Load forecast en
dc.subject.other Mean absolute percentage error en
dc.subject.other Quasi-newton algorithm en
dc.subject.other Regression model en
dc.subject.other Short term load forecasting en
dc.subject.other Computer simulation en
dc.subject.other Electric load forecasting en
dc.subject.other Experiments en
dc.subject.other Neural networks en
dc.subject.other Regression analysis en
dc.subject.other Radial basis function networks en
dc.title Short term load forecasting with Radial basis function network en
heal.type conferenceItem en
heal.identifier.primary 10.1109/PTC.2001.964939 en
heal.identifier.secondary http://dx.doi.org/10.1109/PTC.2001.964939 en
heal.identifier.secondary 964939 en
heal.publicationDate 2001 en
heal.abstract The paper presents experiments with application of Radial Basis Function (RBF) network to Short Term Load Forecasting (STLF) problems. The proposed regression model is used to forecast forty-eight hours ahead electric load. The model has been implemented on real data: inputs to the RBF are past loads, weekday and special-day coding and the output is the load forecast for the given hour. Ordinary RBF was applied in the experiments. The centers of the Gaussian basis functions were selected on the base of the quasi-Newton algorithm. Mean absolute percentage error of about 4% is derived from the data from the Power System in Crete. The performance of the proposed model has been compared with simulations performed by the MLP network, and former models developed for the distribution company in Poland. © 2001 IEEE. en
heal.journalName 2001 IEEE Porto Power Tech Proceedings en
dc.identifier.doi 10.1109/PTC.2001.964939 en
dc.identifier.volume 3 en
dc.identifier.spage 372 en
dc.identifier.epage 375 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής