HEAL DSpace

Synthesis and applications of lattice image operators based on fuzzy norms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Maragos, P en
dc.contributor.author Tzouvaras, V en
dc.contributor.author Stamou, G en
dc.date.accessioned 2014-03-01T02:42:02Z
dc.date.available 2014-03-01T02:42:02Z
dc.date.issued 2001 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30728
dc.subject Edge Detection en
dc.subject Fuzzy Set en
dc.subject Image Analysis en
dc.subject Morphological Operation en
dc.subject Nonlinear Filter en
dc.subject Structure Function en
dc.subject.other Convolution en
dc.subject.other Edge detection en
dc.subject.other Fuzzy sets en
dc.subject.other Gradient methods en
dc.subject.other Mathematical morphology en
dc.subject.other Mathematical operators en
dc.subject.other Nonlinear filtering en
dc.subject.other Optimization en
dc.subject.other Parameter estimation en
dc.subject.other Fuzzy edge gradients en
dc.subject.other Fuzzy operators en
dc.subject.other Image operators en
dc.subject.other Nonlinear convolution en
dc.subject.other Parametric fuzzy norms en
dc.subject.other Image analysis en
dc.title Synthesis and applications of lattice image operators based on fuzzy norms en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICIP.2001.959068 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICIP.2001.959068 en
heal.publicationDate 2001 en
heal.abstract In this paper we use concepts from the lattice-based theory of morphological operators and fuzzy sets to develop generalized lattice image operators that can be expressed as nonlinear convolutions that are suprema or infima of fuzzy intersection or union norms. Our emphasis (and differences with previous works) is the construction of pairs of fuzzy dilation and erosion operators that form lattice adjunctions. This guarantees that their composition will be a valid algebraic opening or closing. The power but also the difficulty in applying these fuzzy operators to image analysis is the large variety of fuzzy norms and the absence of systematic ways in selecting them. Towards this goal, we have performed extensive experiments in applying these fuzzy operators to various nonlinear filtering and image analysis tasks, attempting first to understand the effect that the type of fuzzy norm and the shape-size of structuring function have on the resulting new image operators. Further, we have developed some new fuzzy edge gradients and optimized their usage for edge detection on test problems via a parametric fuzzy norm. en
heal.journalName IEEE International Conference on Image Processing en
dc.identifier.doi 10.1109/ICIP.2001.959068 en
dc.identifier.volume 1 en
dc.identifier.spage 521 en
dc.identifier.epage 524 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής