A neural network approach to the design of a vehicle's non-linear hybrid suspension system

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Spentzas, KN en
dc.contributor.author Kanarachos, SA en
dc.date.accessioned 2014-03-01T02:42:03Z
dc.date.available 2014-03-01T02:42:03Z
dc.date.issued 2002 en
dc.identifier.issn 0954-4054 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30748
dc.subject Neural networks en
dc.subject Semistochastic optimization en
dc.subject Vehicles' hybrid suspension en
dc.subject Vehicles' suspension en
dc.subject.classification Engineering, Manufacturing en
dc.subject.classification Engineering, Mechanical en
dc.subject.other Evolutionary algorithms en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Nonlinear control systems en
dc.subject.other Hybrid suspension systems en
dc.subject.other Vehicle suspensions en
dc.title A neural network approach to the design of a vehicle's non-linear hybrid suspension system en
heal.type conferenceItem en
heal.identifier.primary 10.1243/0954405021520364 en
heal.identifier.secondary http://dx.doi.org/10.1243/0954405021520364 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract In the following, a design method is presented for non-linear hybrid suspension systems of vehicles based on neural networks. A hybrid suspension system is one that behaves as an active suspension system only when the road excitation amplitude is above a prescribed value. Discontinuous operation of the controller helps to minimize the energy consumed by the actuator. The design targets of our method are the minimization of the vertical acceleration imposed on the passengers as well as the respect of all the design and construction constraints. The neural network used is obtained by a Taylor approximation of the unknown non-linear control function. Because of the existence of numerous local minima of the neural network, an evolutionary algorithm is used to solve the resulting neural network problem. en
heal.journalName Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture en
dc.identifier.doi 10.1243/0954405021520364 en
dc.identifier.isi ISI:000176337500018 en
dc.identifier.volume 216 en
dc.identifier.issue 5 en
dc.identifier.spage 833 en
dc.identifier.epage 838 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record