HEAL DSpace

Automatic web site classification in a large repository under information filtering and retrieval techniques

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Anagnostopoulos, I en
dc.contributor.author Kouzas, G en
dc.contributor.author Anagnostopoulos, C en
dc.contributor.author Vergados, D en
dc.contributor.author Papaleonidopoulos, I en
dc.contributor.author Generalis, A en
dc.contributor.author Loumos, V en
dc.contributor.author Kayafas, E en
dc.date.accessioned 2014-03-01T02:42:04Z
dc.date.available 2014-03-01T02:42:04Z
dc.date.issued 2002 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30764
dc.subject E-commerce en
dc.subject Information system en
dc.subject Knowledge segmentation en
dc.subject Portal en
dc.subject Web-page classification en
dc.subject.other Database systems en
dc.subject.other Electronic commerce en
dc.subject.other HTML en
dc.subject.other Information retrieval systems en
dc.subject.other Knowledge representation en
dc.subject.other Management information systems en
dc.subject.other Search engines en
dc.subject.other Information filtering en
dc.subject.other Information system en
dc.subject.other Knowledge segmentation en
dc.subject.other Web site classification en
dc.subject.other Websites en
dc.title Automatic web site classification in a large repository under information filtering and retrieval techniques en
heal.type conferenceItem en
heal.identifier.primary 10.1109/MELECON.2002.1014574 en
heal.identifier.secondary http://dx.doi.org/10.1109/MELECON.2002.1014574 en
heal.publicationDate 2002 en
heal.abstract In nowadays, there is a huge volume of information on the web, which is disseminated to the users in a chaotic way. In order to be easily accessed, the information must be clustered and classified in appropriate knowledge areas. Thus, many heavily visited sites or Portals try to unify the access to multiple information sources, providing by this way classification of information. This paper proposes a system, aiming to classify e-commerce sites according their web-content. This system can be implemented for automatic knowledge segmentation in a Portal or in a search engine repository. The system performance reached 96% in the first test sets, after the learning phase. However, the performance significantly increases (up to 98%) as the number of the test sets increases. en
heal.journalName Proceedings of the Mediterranean Electrotechnical Conference - MELECON en
dc.identifier.doi 10.1109/MELECON.2002.1014574 en
dc.identifier.volume 1 en
dc.identifier.spage 279 en
dc.identifier.epage 283 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής