dc.contributor.author |
Anagnostopoulos, I |
en |
dc.contributor.author |
Kouzas, G |
en |
dc.contributor.author |
Anagnostopoulos, C |
en |
dc.contributor.author |
Vergados, D |
en |
dc.contributor.author |
Papaleonidopoulos, I |
en |
dc.contributor.author |
Generalis, A |
en |
dc.contributor.author |
Loumos, V |
en |
dc.contributor.author |
Kayafas, E |
en |
dc.date.accessioned |
2014-03-01T02:42:04Z |
|
dc.date.available |
2014-03-01T02:42:04Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30764 |
|
dc.subject |
E-commerce |
en |
dc.subject |
Information system |
en |
dc.subject |
Knowledge segmentation |
en |
dc.subject |
Portal |
en |
dc.subject |
Web-page classification |
en |
dc.subject.other |
Database systems |
en |
dc.subject.other |
Electronic commerce |
en |
dc.subject.other |
HTML |
en |
dc.subject.other |
Information retrieval systems |
en |
dc.subject.other |
Knowledge representation |
en |
dc.subject.other |
Management information systems |
en |
dc.subject.other |
Search engines |
en |
dc.subject.other |
Information filtering |
en |
dc.subject.other |
Information system |
en |
dc.subject.other |
Knowledge segmentation |
en |
dc.subject.other |
Web site classification |
en |
dc.subject.other |
Websites |
en |
dc.title |
Automatic web site classification in a large repository under information filtering and retrieval techniques |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/MELECON.2002.1014574 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/MELECON.2002.1014574 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
In nowadays, there is a huge volume of information on the web, which is disseminated to the users in a chaotic way. In order to be easily accessed, the information must be clustered and classified in appropriate knowledge areas. Thus, many heavily visited sites or Portals try to unify the access to multiple information sources, providing by this way classification of information. This paper proposes a system, aiming to classify e-commerce sites according their web-content. This system can be implemented for automatic knowledge segmentation in a Portal or in a search engine repository. The system performance reached 96% in the first test sets, after the learning phase. However, the performance significantly increases (up to 98%) as the number of the test sets increases. |
en |
heal.journalName |
Proceedings of the Mediterranean Electrotechnical Conference - MELECON |
en |
dc.identifier.doi |
10.1109/MELECON.2002.1014574 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
279 |
en |
dc.identifier.epage |
283 |
en |