dc.contributor.author |
Vimplis, M |
en |
dc.contributor.author |
Kyriakopoulos, KJ |
en |
dc.date.accessioned |
2014-03-01T02:42:07Z |
|
dc.date.available |
2014-03-01T02:42:07Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30796 |
|
dc.subject |
Data Clustering |
en |
dc.subject |
Extreme Value |
en |
dc.subject |
Gesture Recognition |
en |
dc.subject |
Hierarchical Clustering |
en |
dc.subject |
Image Processing |
en |
dc.subject |
Linear Model |
en |
dc.subject |
Linear Regression |
en |
dc.subject |
Mathematical Model |
en |
dc.subject |
Sign Language |
en |
dc.subject |
Statistical Approach |
en |
dc.subject |
Statistical Pattern Recognition |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Edge detection |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Human computer interaction |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Regression analysis |
en |
dc.subject.other |
Signal filtering and prediction |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Data clustering |
en |
dc.subject.other |
Linear regression |
en |
dc.subject.other |
Pixels |
en |
dc.subject.other |
Statistical pattern recognition |
en |
dc.subject.other |
Gesture recognition |
en |
dc.title |
Gesture recognition in realistic images: The statistical approach |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICIP.2002.1038141 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICIP.2002.1038141 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
This paper presents a robust gesture segmentation and recognition scheme in real images using statistical pattern recognition techniques, like data clustering and linear regression. Specifically, a hierarchical clustering algorithm is adopted because it does not require the exact number of sought clusters. Thus the proposed gesture recognition scheme is capable to cope with gestures having a variable number of extended fingers, a common situation in many practical applications like the expanded user-machine interface and the automatic deaf-mute sign language translation. For the mathematical modeling of clusters, a linear regression scheme is used. While in other cases linear regression is a simplification made for time saving, in this case it also ensures representation accuracy due to the geometry of the human hand that is mostly composed of linear segments. Statistical linear modeling enables the handling of points with extreme values in comparison to the rest (outliers). As a result, the suggested algorithm is not affected by pixels that have been mistakenly selected by the image processing algorithms. |
en |
heal.journalName |
IEEE International Conference on Image Processing |
en |
dc.identifier.doi |
10.1109/ICIP.2002.1038141 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
I/781 |
en |
dc.identifier.epage |
I/784 |
en |