HEAL DSpace

Modelling of nonlinear process dynamics using Kohonen's neural networks, fuzzy systems and Chebyshev series

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Alexandridis, AP en
dc.contributor.author Siettos, CI en
dc.contributor.author Sarimveis, HK en
dc.contributor.author Boudouvis, AG en
dc.contributor.author Bafas, GV en
dc.date.accessioned 2014-03-01T02:42:08Z
dc.date.available 2014-03-01T02:42:08Z
dc.date.issued 2002 en
dc.identifier.issn 0098-1354 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30804
dc.subject Chebyshev series en
dc.subject Fuzzy dynamical models en
dc.subject Nonlinear system identification en
dc.subject Qualitative modeling en
dc.subject Self-organizing maps en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Chemical en
dc.subject.other Chebyshev approximation en
dc.subject.other Feedforward neural networks en
dc.subject.other Nonlinear systems en
dc.subject.other Performance en
dc.subject.other Steady states en
dc.subject.other Chemical engineering en
dc.subject.other dynamic modeling en
dc.subject.other fuzzy mathematics en
dc.subject.other neural network en
dc.subject.other process industry en
dc.subject.other analytic method en
dc.subject.other artificial neural network en
dc.subject.other chebyshev series en
dc.subject.other conference paper en
dc.subject.other continuous stirred tank reactor en
dc.subject.other diagnostic approach route en
dc.subject.other evaluation en
dc.subject.other intermethod comparison en
dc.subject.other linguistics en
dc.subject.other mathematical model en
dc.subject.other methodology en
dc.subject.other nonlinear system en
dc.subject.other steady state en
dc.title Modelling of nonlinear process dynamics using Kohonen's neural networks, fuzzy systems and Chebyshev series en
heal.type conferenceItem en
heal.identifier.primary 10.1016/S0098-1354(01)00785-2 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0098-1354(01)00785-2 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract This paper introduces a new systematic methodology to the problem of nonlinear system identification with the aid of neural networks, fuzzy systems and truncated Chebyshev series. The proposed methodology is of general use and results in both a linguistic and an analytical model of the system under study. The method was successfully tested in the identification of certain operating regions in a Continuous Stirred Tank Reactor (CSTR) exhibiting various types of nonlinear behaviour, such as limit cycles and multiple steady states. The performance of the methodology was evaluated via a comparison with two different identification schemes, namely a feedforward neural network and an approach based on the normal form theory. (C) 2002 Elsevier Science Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Computers and Chemical Engineering en
dc.identifier.doi 10.1016/S0098-1354(01)00785-2 en
dc.identifier.isi ISI:000175994800002 en
dc.identifier.volume 26 en
dc.identifier.issue 4-5 en
dc.identifier.spage 479 en
dc.identifier.epage 486 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής