dc.contributor.author |
Dimitriadis, D |
en |
dc.contributor.author |
Maragos, P |
en |
dc.contributor.author |
Potamianos, A |
en |
dc.date.accessioned |
2014-03-01T02:42:08Z |
|
dc.date.available |
2014-03-01T02:42:08Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
07367791 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30805 |
|
dc.subject |
Automatic Speech Recognition |
en |
dc.subject |
Robust Method |
en |
dc.subject |
Speech Analysis |
en |
dc.subject |
Speech Production |
en |
dc.subject |
Speech Recognition |
en |
dc.subject |
Word Recognition |
en |
dc.subject |
Time Varying |
en |
dc.subject.other |
Acoustic signal processing |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Amplitude modulation |
en |
dc.subject.other |
Database systems |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Frequency modulation |
en |
dc.subject.other |
Markov processes |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Speech analysis |
en |
dc.subject.other |
Automatic speech recognition systems |
en |
dc.subject.other |
Hidden Markov models |
en |
dc.subject.other |
Speech signals |
en |
dc.subject.other |
Time varying models |
en |
dc.subject.other |
Speech recognition |
en |
dc.title |
Modulation features for speech recognition |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICASSP.2002.5743733 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICASSP.2002.5743733 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Automatic speech recognition (ASR) systems can benefit from including into their acoustic processing part new features that account for various nonlinear and time-varying phenomena during speech production. In this paper, we develop robust methods to extract novel acoustic features from speech signals of the modulation type based on time-varying models for speech analysis. Further, we integrate the new speech features with the standard linear ones (melfrequency cesptrum) to develop a augmented set of acoustic features and demonstrate its efficacy by showing significant improvements in HMM-based word recognition over the TIMIT database. |
en |
heal.journalName |
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
en |
dc.identifier.doi |
10.1109/ICASSP.2002.5743733 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
I/377 |
en |
dc.identifier.epage |
I/380 |
en |