HEAL DSpace

Optimal recursive similarity measure estimation for interactive content-based image retrieval

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, N en
dc.contributor.author Doulamis, A en
dc.date.accessioned 2014-03-01T02:42:08Z
dc.date.available 2014-03-01T02:42:08Z
dc.date.issued 2002 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30810
dc.subject Content Based Image Retrieval en
dc.subject Feature Vector en
dc.subject Functional Analysis en
dc.subject Recursive Algorithm en
dc.subject Relevance Feedback en
dc.subject Similarity Measure en
dc.subject Taylor Series Expansion en
dc.subject First Order en
dc.subject.other Algorithms en
dc.subject.other Feedback en
dc.subject.other Interactive computer graphics en
dc.subject.other Mathematical models en
dc.subject.other Optimization en
dc.subject.other Functional analysis en
dc.subject.other Recursive algorithm en
dc.subject.other Similarity estimation en
dc.subject.other Content based retrieval en
dc.title Optimal recursive similarity measure estimation for interactive content-based image retrieval en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICIP.2002.1038190 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICIP.2002.1038190 en
heal.publicationDate 2002 en
heal.abstract In this paper, a new recursive algorithm is proposed for optimal estimation of similarity measure used in a content-based retrieval system. This is performed through a relevance feedback mechanism, which adjusts the similarity distance using information fed back to the user according to the relevance of the previously retrieved images. On contrast to conventional relevance feedback schemes to which a degree of importance is assigned to each element of the feature vector describing the image content, the proposed algorithm optimally adapts the similarity measure at each feedback iteration. This is performed by modeling the similarity distance using functional analysis. The algorithm assumes that a small modification of the similarity measure parameters is adequate to adapt the system response to the new user's requirements. In this case, a first-order Taylor series expansion can be applied and a computationally efficient scheme can be implemented to estimate the optimal similarity measure. en
heal.journalName IEEE International Conference on Image Processing en
dc.identifier.doi 10.1109/ICIP.2002.1038190 en
dc.identifier.volume 1 en
dc.identifier.spage I/972 en
dc.identifier.epage I/975 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής