dc.contributor.author |
Apostolikas, G |
en |
dc.contributor.author |
Tzafestas, S |
en |
dc.date.accessioned |
2014-03-01T02:42:09Z |
|
dc.date.available |
2014-03-01T02:42:09Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
08843627 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30817 |
|
dc.subject |
Adaptive |
en |
dc.subject |
Identification |
en |
dc.subject |
Radial Basis Function Networks |
en |
dc.subject |
Time-Varying System |
en |
dc.subject |
Tracking |
en |
dc.subject.other |
Adaptive systems |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Time varying networks |
en |
dc.subject.other |
Time-varying nonlinear systems |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.title |
Radial basis function neural networks for adaptive on-line identification of rapidly time-varying nonlinear systems with optimal adaptation to new structures |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICSMC.2002.1176369 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICSMC.2002.1176369 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
This paper presents an adaptive RBF network for the on-line identification and tracking of rapidly changing time-varying non-linear systems. The proposed algorithm is capable of maintaining the accuracy of learned patterns even when a large number of aged patterns are replaced by new ones through the adaptation process. Moreover, the algorithm exhibits a strong learning capacity with instant embodiment of new data which makes it suitable for tracking of fast-changing systems. However, the accuracy and speed in the adaptation is balanced by the computational cost which increases with the square of the number of the radial basis functions, resulting in a computational expensive, but still practically feasible, algorithm. The simulation results show the effectiveness (in terms of degradation of learned patterns and learning capacity) of this architecture for adaptive modeling. |
en |
heal.journalName |
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics |
en |
dc.identifier.doi |
10.1109/ICSMC.2002.1176369 |
en |
dc.identifier.volume |
5 |
en |
dc.identifier.spage |
289 |
en |
dc.identifier.epage |
294 |
en |