HEAL DSpace

A decision tree-based method, using auscultation findings, for the differential diagnosis of aortic stenosis from mitral regurgitation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stasis, ACh en
dc.contributor.author Loukis, EN en
dc.contributor.author Pavlopoulos, SA en
dc.contributor.author Koutsouris, D en
dc.date.accessioned 2014-03-01T02:42:10Z
dc.date.available 2014-03-01T02:42:10Z
dc.date.issued 2003 en
dc.identifier.issn 02766574 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30839
dc.subject Aortic Stenosis en
dc.subject Classification Accuracy en
dc.subject Data Mining en
dc.subject Differential Diagnosis en
dc.subject Mitral Regurgitation en
dc.subject Decision Tree en
dc.subject Decision Tree Classifier en
dc.subject.other Acoustic intensity en
dc.subject.other Algorithms en
dc.subject.other Blood en
dc.subject.other Cardiology en
dc.subject.other Computerized tomography en
dc.subject.other Database systems en
dc.subject.other Decision support systems en
dc.subject.other Diseases en
dc.subject.other Echocardiography en
dc.subject.other Health care en
dc.subject.other Magnetic resonance imaging en
dc.subject.other Spectrum analysis en
dc.subject.other Aortic stenosis (AS) en
dc.subject.other Decision tree structures en
dc.subject.other Heart sound signals en
dc.subject.other Mitral regurgitation (MR) en
dc.subject.other Diagnosis en
dc.title A decision tree-based method, using auscultation findings, for the differential diagnosis of aortic stenosis from mitral regurgitation en
heal.type conferenceItem en
heal.identifier.primary 10.1109/CIC.2003.1291270 en
heal.identifier.secondary http://dx.doi.org/10.1109/CIC.2003.1291270 en
heal.publicationDate 2003 en
heal.abstract In this study, Decision Tree algorithms are used with promising results in a crucial and at the same time complicated classification problem concerning differential diagnosis of heart sounds. Decision Tree structures are constructed, using data mining/distillation methods and then are used to classify heart sounds that were recorded from patients that have either Aortic Stenosis (AS) or Mitral Regurgitation (MR). Emphasis is given on the selection of the appropriate features that are adequately independent from the heart sound signal acquisition method. The differentiation capabilities and the classification performance of the fully expanded Decision Tree classifiers and the pruned Decision tree classifiers are studied for this problem. For each constructed Decision Tree classifier the partial classification accuracies for the AS and MR auscultation findings are also estimated. en
heal.journalName Computers in Cardiology en
dc.identifier.doi 10.1109/CIC.2003.1291270 en
dc.identifier.volume 30 en
dc.identifier.spage 769 en
dc.identifier.epage 772 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής