dc.contributor.author |
Tsekouras, GJ |
en |
dc.contributor.author |
Elias, ChN |
en |
dc.contributor.author |
Kavatza, S |
en |
dc.contributor.author |
Contaxis, GC |
en |
dc.date.accessioned |
2014-03-01T02:42:11Z |
|
dc.date.available |
2014-03-01T02:42:11Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30840 |
|
dc.subject |
Data mining |
en |
dc.subject |
Energy forecasting |
en |
dc.subject |
Hybrid non-linear multivariable regression model |
en |
dc.subject.other |
Correlation analysis |
en |
dc.subject.other |
Energy forecasting |
en |
dc.subject.other |
High voltage |
en |
dc.subject.other |
Multivariable regression model |
en |
dc.subject.other |
Non-linear regression |
en |
dc.subject.other |
Regression method |
en |
dc.subject.other |
Residential customers |
en |
dc.subject.other |
Statistical indices |
en |
dc.subject.other |
Weather parameters |
en |
dc.subject.other |
Energy utilization |
en |
dc.subject.other |
Forecasting |
en |
dc.subject.other |
Data mining |
en |
dc.title |
A hybrid non-linear regression midterm energy forecasting method using data mining |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/PTC.2003.1304161 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/PTC.2003.1304161 |
en |
heal.identifier.secondary |
1304161 |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
The objective of this paper is to present a new methodology for midterm energy forecasting in the framework of a data mining procedure. The method includes the development of a database that contains historical relevant data, such as values for energy consumption, weather parameters, statistical indices etc. The data is mined from the database, filtered, preprocessed and converted to desired forms. Data knowledge discovery is succeeded by constructing a non-linear multivariable regression model which takes in consideration correlation analysis on the selected variables. Results of the method for two types of customers, i.e. high voltage industries and residential customers are compared to standard regression methods. © 2003 IEEE. |
en |
heal.journalName |
2003 IEEE Bologna PowerTech - Conference Proceedings |
en |
dc.identifier.doi |
10.1109/PTC.2003.1304161 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
380 |
en |
dc.identifier.epage |
387 |
en |