HEAL DSpace

A hybrid non-linear regression midterm energy forecasting method using data mining

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsekouras, GJ en
dc.contributor.author Elias, ChN en
dc.contributor.author Kavatza, S en
dc.contributor.author Contaxis, GC en
dc.date.accessioned 2014-03-01T02:42:11Z
dc.date.available 2014-03-01T02:42:11Z
dc.date.issued 2003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30840
dc.subject Data mining en
dc.subject Energy forecasting en
dc.subject Hybrid non-linear multivariable regression model en
dc.subject.other Correlation analysis en
dc.subject.other Energy forecasting en
dc.subject.other High voltage en
dc.subject.other Multivariable regression model en
dc.subject.other Non-linear regression en
dc.subject.other Regression method en
dc.subject.other Residential customers en
dc.subject.other Statistical indices en
dc.subject.other Weather parameters en
dc.subject.other Energy utilization en
dc.subject.other Forecasting en
dc.subject.other Data mining en
dc.title A hybrid non-linear regression midterm energy forecasting method using data mining en
heal.type conferenceItem en
heal.identifier.primary 10.1109/PTC.2003.1304161 en
heal.identifier.secondary http://dx.doi.org/10.1109/PTC.2003.1304161 en
heal.identifier.secondary 1304161 en
heal.publicationDate 2003 en
heal.abstract The objective of this paper is to present a new methodology for midterm energy forecasting in the framework of a data mining procedure. The method includes the development of a database that contains historical relevant data, such as values for energy consumption, weather parameters, statistical indices etc. The data is mined from the database, filtered, preprocessed and converted to desired forms. Data knowledge discovery is succeeded by constructing a non-linear multivariable regression model which takes in consideration correlation analysis on the selected variables. Results of the method for two types of customers, i.e. high voltage industries and residential customers are compared to standard regression methods. © 2003 IEEE. en
heal.journalName 2003 IEEE Bologna PowerTech - Conference Proceedings en
dc.identifier.doi 10.1109/PTC.2003.1304161 en
dc.identifier.volume 1 en
dc.identifier.spage 380 en
dc.identifier.epage 387 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής