HEAL DSpace

An artificial neural network approach for classifying e-Commerce Web pages

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Anagnostopoulos, I en
dc.contributor.author Kouzas, G en
dc.contributor.author Anagnostopoulos, C en
dc.contributor.author Psoroulas, I en
dc.contributor.author Vergados, D en
dc.contributor.author Loumos, V en
dc.contributor.author Kayafas, E en
dc.date.accessioned 2014-03-01T02:42:12Z
dc.date.available 2014-03-01T02:42:12Z
dc.date.issued 2003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30854
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-1442351317&partnerID=40&md5=5c4ed72a1d6da02620b524c750b99a16 en
dc.relation.uri http://www.informatik.uni-trier.de/~ley/db/conf/appinf/appinf2003.html#AnagnostopoulosKAPVLK03 en
dc.subject Artificial Neural Network en
dc.subject e-commerce en
dc.subject Information system en
dc.subject Web page classification en
dc.subject.other Algorithms en
dc.subject.other Classification (of information) en
dc.subject.other Information management en
dc.subject.other Neural networks en
dc.subject.other Portals en
dc.subject.other Servers en
dc.subject.other Information systems en
dc.subject.other Web page classification en
dc.subject.other Electronic commerce en
dc.title An artificial neural network approach for classifying e-Commerce Web pages en
heal.type conferenceItem en
heal.publicationDate 2003 en
heal.abstract In this paper, an information system capable of identifying and categorizing e-commerce web pages is proposed, on the basis of information filtering combined with a Artificial Neural Network (ANN). It includes term transformation techniques along with pattern recognition methods for content identification. The information representation techniques are based on a multi-dimensional descriptor vector with 432 word stems collected either manually or in an automatic way. This vector is called e-Commerce Descriptor Vector (e-CDV) and when applied in a proper way according to a proposed technique, it assigns a unique profile to every tested web page. The created profile is then considered as a pattern, and it is categorized by the system according the Business Media Framework (BMF). The system classifies twelve classes of web pages. Eleven of them follow the concepts of the BMF, while the last represents all the other web pages. en
heal.journalName IASTED International Multi-Conference on Applied Informatics en
dc.identifier.volume 21 en
dc.identifier.spage 237 en
dc.identifier.epage 242 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής