HEAL DSpace

ART-based neuro-fuzzy modelling applied to reinforcement learning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zikidis, KC en
dc.contributor.author Tzafestas, SG en
dc.date.accessioned 2014-03-01T02:42:12Z
dc.date.available 2014-03-01T02:42:12Z
dc.date.issued 2003 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30858
dc.subject Function Approximation en
dc.subject Fuzzy Model en
dc.subject neuro fuzzy en
dc.subject Reinforcement Learning en
dc.subject takagi sugeno kang en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Algorithms en
dc.subject.other Computational complexity en
dc.subject.other Learning algorithms en
dc.subject.other Learning systems en
dc.subject.other Neural networks en
dc.subject.other Optimal systems en
dc.subject.other Parameter estimation en
dc.subject.other Reliability en
dc.subject.other Functional reasoning methods en
dc.subject.other Fuzzy ART concepts en
dc.subject.other Mean reward en
dc.subject.other Value functions en
dc.subject.other Fuzzy control en
dc.title ART-based neuro-fuzzy modelling applied to reinforcement learning en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-45226-3_4 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-45226-3_4 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract The mountain car problem is a well-known task, often used for testing reinforcement learning algorithms. It is a problem with real valued state variables, which means that some kind of function approximation is required. In this paper, three reinforcement learning architectures are compared on the mountain car problem. Comparison results are presented, indicating the potentials of the actor-only approach. The function approximation modules used are based on NeuroFAST (Neuro-Fuzzy ART-Based Structure and Parameter Learning TSK Model). NeuroFAST is a neuro-fuzzy modelling algorithm, with well-proven function approximation capabilities, and features the functional reasoning method (the Takagi-Sugeno-Kang fuzzy model), Fuzzy ART concepts and specific techniques. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) en
heal.bookName LECTURE NOTES IN ARTIFICIAL INTELLIGENCE en
dc.identifier.doi 10.1007/978-3-540-45226-3_4 en
dc.identifier.isi ISI:000186518100004 en
dc.identifier.volume 2774 PART 2 en
dc.identifier.spage 22 en
dc.identifier.epage 29 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής