dc.contributor.author |
Zikidis, KC |
en |
dc.contributor.author |
Tzafestas, SG |
en |
dc.date.accessioned |
2014-03-01T02:42:12Z |
|
dc.date.available |
2014-03-01T02:42:12Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30858 |
|
dc.subject |
Function Approximation |
en |
dc.subject |
Fuzzy Model |
en |
dc.subject |
neuro fuzzy |
en |
dc.subject |
Reinforcement Learning |
en |
dc.subject |
takagi sugeno kang |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computational complexity |
en |
dc.subject.other |
Learning algorithms |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Optimal systems |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Reliability |
en |
dc.subject.other |
Functional reasoning methods |
en |
dc.subject.other |
Fuzzy ART concepts |
en |
dc.subject.other |
Mean reward |
en |
dc.subject.other |
Value functions |
en |
dc.subject.other |
Fuzzy control |
en |
dc.title |
ART-based neuro-fuzzy modelling applied to reinforcement learning |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-45226-3_4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-45226-3_4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
The mountain car problem is a well-known task, often used for testing reinforcement learning algorithms. It is a problem with real valued state variables, which means that some kind of function approximation is required. In this paper, three reinforcement learning architectures are compared on the mountain car problem. Comparison results are presented, indicating the potentials of the actor-only approach. The function approximation modules used are based on NeuroFAST (Neuro-Fuzzy ART-Based Structure and Parameter Learning TSK Model). NeuroFAST is a neuro-fuzzy modelling algorithm, with well-proven function approximation capabilities, and features the functional reasoning method (the Takagi-Sugeno-Kang fuzzy model), Fuzzy ART concepts and specific techniques. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) |
en |
heal.bookName |
LECTURE NOTES IN ARTIFICIAL INTELLIGENCE |
en |
dc.identifier.doi |
10.1007/978-3-540-45226-3_4 |
en |
dc.identifier.isi |
ISI:000186518100004 |
en |
dc.identifier.volume |
2774 PART 2 |
en |
dc.identifier.spage |
22 |
en |
dc.identifier.epage |
29 |
en |