dc.contributor.author |
Wallace, M |
en |
dc.contributor.author |
Akrivas, G |
en |
dc.contributor.author |
Stamou, G |
en |
dc.date.accessioned |
2014-03-01T02:42:12Z |
|
dc.date.available |
2014-03-01T02:42:12Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30860 |
|
dc.subject |
Automatic Detection |
en |
dc.subject |
Hierarchical Clustering |
en |
dc.subject |
Semantic Indexing |
en |
dc.subject |
Similarity Measure |
en |
dc.subject.other |
Hierarchical systems |
en |
dc.subject.other |
Indexing (of information) |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Semantics |
en |
dc.subject.other |
Automatic thematic categorization |
en |
dc.subject.other |
Fuzzy control |
en |
dc.title |
Automatic thematic categorization of documents using a fuzzy taxonomy and fuzzy hierarchical clustering |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/FUZZ.2003.1206644 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/FUZZ.2003.1206644 |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In this paper we formally define the problem of automatic detection of thematic categories in a semantically indexed document, and identify the main obstacles to overcome in this process. Furthermore, we explain how detection of thematic categories can be achieved, with the use of a fuzzy quasi-taxonomic relation. Our approach relies on a fuzzy hierarchical clustering algorithm; this algorithm uses a similarity measure that is based on the notion of context. |
en |
heal.journalName |
IEEE International Conference on Fuzzy Systems |
en |
dc.identifier.doi |
10.1109/FUZZ.2003.1206644 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
1446 |
en |
dc.identifier.epage |
1451 |
en |