HEAL DSpace

Characterization of CT Liver Lesions Based on Texture Features and a Multiple Neural Network Classification Scheme

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mougiakakou, SGr en
dc.contributor.author Valavanis, I en
dc.contributor.author Nikita, KS en
dc.contributor.author Nikita, A en
dc.contributor.author Kelekis, D en
dc.date.accessioned 2014-03-01T02:42:12Z
dc.date.available 2014-03-01T02:42:12Z
dc.date.issued 2003 en
dc.identifier.issn 05891019 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30863
dc.subject Genetic algorithm en
dc.subject Liver CT images en
dc.subject Multiple neural network classification en
dc.subject Texture features en
dc.subject Voting scheme en
dc.subject.other Backpropagation en
dc.subject.other Biological organs en
dc.subject.other Computer aided diagnosis en
dc.subject.other Computerized tomography en
dc.subject.other Genetic algorithms en
dc.subject.other Learning systems en
dc.subject.other Neural networks en
dc.subject.other Statistics en
dc.subject.other Textures en
dc.subject.other Multiple neural network classification en
dc.subject.other Texture features en
dc.subject.other Medical imaging en
dc.title Characterization of CT Liver Lesions Based on Texture Features and a Multiple Neural Network Classification Scheme en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEMBS.2003.1279504 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.2003.1279504 en
heal.publicationDate 2003 en
heal.abstract In this paper, a Computer Aided Diagnosis (CAD) system for the characterization of hepatic tissue from Computed Tomography (CT) images is presented. Regions of Interest (ROI's) corresponding to normal liver, cyst, hemangioma, and hepatocellular carcinoma, are drawn by an experienced radiologist on abdominal non-enhanced CT images. For each ROI, five distinct sets of texture features are extracted using the following methods: first order statistics, spatial gray level dependence matrix, gray level difference method, Laws' texture energy measures, and fractal dimension measurements. If the dimensionality of a feature set is greater than a predefined threshold, feature selection based on a Genetic Algorithm (GA) is applied. Classification of the ROI is then carried out by a system of five neural networks (NNs), each using as input one of the above feature sets. The members of the NN system (primary classifiers) are 4-class NNs trained by the backpropagation algorithm with adaptive learning rate and momentum. The final decision of the CAD system is based on the application of a voting scheme across the outputs of the individual NNs. The multiple classification scheme using the five sets of texture features results in significantly enhanced performance, as compared to the classification performance of the individual primary classifiers. en
heal.journalName Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings en
dc.identifier.doi 10.1109/IEMBS.2003.1279504 en
dc.identifier.volume 2 en
dc.identifier.spage 1287 en
dc.identifier.epage 1290 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής