HEAL DSpace

Combining hierarchy encoding and pre-grouping: Intelligent grouping in star join processing

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Pieringer, R en
dc.contributor.author Elhardt, K en
dc.contributor.author Ramsak, F en
dc.contributor.author Markl, V en
dc.contributor.author Fenk, R en
dc.contributor.author Bayer, R en
dc.contributor.author Karayannidis, N en
dc.contributor.author Tsois, A en
dc.contributor.author Sellis, T en
dc.date.accessioned 2014-03-01T02:42:13Z
dc.date.available 2014-03-01T02:42:13Z
dc.date.issued 2003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30868
dc.subject Data Warehouse en
dc.subject Hierarchical Clustering en
dc.subject Materialized Views en
dc.subject Perforation en
dc.subject Query Processing en
dc.subject Query Rewriting en
dc.subject.other Hierarchy semantics en
dc.subject.other Logical optimization en
dc.subject.other Star query processing en
dc.subject.other Algorithms en
dc.subject.other Data processing en
dc.subject.other Optimization en
dc.subject.other Performance en
dc.subject.other Program compilers en
dc.subject.other Query languages en
dc.subject.other Semantics en
dc.subject.other Data warehouses en
dc.title Combining hierarchy encoding and pre-grouping: Intelligent grouping in star join processing en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICDE.2003.1260803 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICDE.2003.1260803 en
heal.publicationDate 2003 en
heal.abstract Efficient star query processing is crucial for a performance data warehouse (DW) implementation and much work is available on physical optimization (e.g., indexing and schema design) and logical optimization (e.g., pre-aggregated materialized views with query rewriting). One important step in the query processing phase is, however, still a bottleneck: the residual join of results from the fact table with the dimension tables in combination with grouping and aggregation. This phase typically consumes between 50% and 80% of the overall processing times. In typical DW scenarios pre-grouping methods only have a limited effect as the grouping is usually specified on the hierarchy levels of the dimension tables and not on the fact table itself. In this paper, we suggest a combination of hierarchical clustering and pre-grouping as we have implemented in the relational DBMS Transbase. Exploiting hierarchy semantics for the pre-grouping of fact table result tuples is several times faster than conventional query processing. The reason for this is that hierarchical pre-grouping reduces the number the join operations significantly. With this method even queries covering a large part of the table can be executed within a time span acceptable for interactive query processing. en
heal.journalName Proceedings - International Conference on Data Engineering en
dc.identifier.doi 10.1109/ICDE.2003.1260803 en
dc.identifier.spage 329 en
dc.identifier.epage 340 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής