dc.contributor.author |
Pieringer, R |
en |
dc.contributor.author |
Elhardt, K |
en |
dc.contributor.author |
Ramsak, F |
en |
dc.contributor.author |
Markl, V |
en |
dc.contributor.author |
Fenk, R |
en |
dc.contributor.author |
Bayer, R |
en |
dc.contributor.author |
Karayannidis, N |
en |
dc.contributor.author |
Tsois, A |
en |
dc.contributor.author |
Sellis, T |
en |
dc.date.accessioned |
2014-03-01T02:42:13Z |
|
dc.date.available |
2014-03-01T02:42:13Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30868 |
|
dc.subject |
Data Warehouse |
en |
dc.subject |
Hierarchical Clustering |
en |
dc.subject |
Materialized Views |
en |
dc.subject |
Perforation |
en |
dc.subject |
Query Processing |
en |
dc.subject |
Query Rewriting |
en |
dc.subject.other |
Hierarchy semantics |
en |
dc.subject.other |
Logical optimization |
en |
dc.subject.other |
Star query processing |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Data processing |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Performance |
en |
dc.subject.other |
Program compilers |
en |
dc.subject.other |
Query languages |
en |
dc.subject.other |
Semantics |
en |
dc.subject.other |
Data warehouses |
en |
dc.title |
Combining hierarchy encoding and pre-grouping: Intelligent grouping in star join processing |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICDE.2003.1260803 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICDE.2003.1260803 |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
Efficient star query processing is crucial for a performance data warehouse (DW) implementation and much work is available on physical optimization (e.g., indexing and schema design) and logical optimization (e.g., pre-aggregated materialized views with query rewriting). One important step in the query processing phase is, however, still a bottleneck: the residual join of results from the fact table with the dimension tables in combination with grouping and aggregation. This phase typically consumes between 50% and 80% of the overall processing times. In typical DW scenarios pre-grouping methods only have a limited effect as the grouping is usually specified on the hierarchy levels of the dimension tables and not on the fact table itself. In this paper, we suggest a combination of hierarchical clustering and pre-grouping as we have implemented in the relational DBMS Transbase. Exploiting hierarchy semantics for the pre-grouping of fact table result tuples is several times faster than conventional query processing. The reason for this is that hierarchical pre-grouping reduces the number the join operations significantly. With this method even queries covering a large part of the table can be executed within a time span acceptable for interactive query processing. |
en |
heal.journalName |
Proceedings - International Conference on Data Engineering |
en |
dc.identifier.doi |
10.1109/ICDE.2003.1260803 |
en |
dc.identifier.spage |
329 |
en |
dc.identifier.epage |
340 |
en |