dc.contributor.author |
Terry, SC |
en |
dc.contributor.author |
Rochelle, JM |
en |
dc.contributor.author |
Binkley, DM |
en |
dc.contributor.author |
Blalock, BJ |
en |
dc.contributor.author |
Foty, DP |
en |
dc.contributor.author |
Bucher, M |
en |
dc.date.accessioned |
2014-03-01T02:42:13Z |
|
dc.date.available |
2014-03-01T02:42:13Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0018-9499 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30869 |
|
dc.subject |
Analog circuit design |
en |
dc.subject |
BSIM3V3 |
en |
dc.subject |
CMOS modeling |
en |
dc.subject |
EKV 2.6 |
en |
dc.subject |
Inversion coefficient |
en |
dc.subject |
Transconductnce efficiency |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Nuclear Science & Technology |
en |
dc.subject.other |
CMOS integrated circuits |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Current voltage characteristics |
en |
dc.subject.other |
MOSFET devices |
en |
dc.subject.other |
Voltage measurement |
en |
dc.subject.other |
Analog circuits |
en |
dc.subject.other |
Particle detectors |
en |
dc.title |
Comparison of a BSIM3V3 and EKV MOSFET model for a 0.5 μm CMOS process and implications for analog circuit design |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/TNS.2003.814588 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TNS.2003.814588 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
Design requirements for high-density detector front-ends and other high-performance analog systems routinely force designers to operate devices in moderate inversion. However, CMOS models have traditionally not handled this operating region very well. In this paper, the Berkeley Short-Channel IFGET Model (BSIM3V3) and EKV 2.6 MOSFET models are evaluated in terms of their ability to model low-voltage analog circuits. Simulation results for a standard 0.5 mum. CMOS process are presented and compared to measured data. The data presented includes simulated and measured output conductance and transconductance efficiency for devices with channel lengths ranging from 0.5 mum. to 33 mum. In addition, the models are compared in terms of their ability to handle the different operating regions of the MOS transistor (weak, moderate, and strong inversion). The results highlight the difficulty of obtaining a model that accurately predicts the operation of high-performance analog systems. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Nuclear Science |
en |
dc.identifier.doi |
10.1109/TNS.2003.814588 |
en |
dc.identifier.isi |
ISI:000184789000031 |
en |
dc.identifier.volume |
50 |
en |
dc.identifier.issue |
4 II |
en |
dc.identifier.spage |
915 |
en |
dc.identifier.epage |
920 |
en |