HEAL DSpace

Competitive genetic algorithms with application to reliability optimal design

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dimou, CK en
dc.contributor.author Koumousis, VK en
dc.date.accessioned 2014-03-01T02:42:13Z
dc.date.available 2014-03-01T02:42:13Z
dc.date.issued 2003 en
dc.identifier.issn 0965-9978 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30870
dc.subject Competition en
dc.subject Genetic algorithms en
dc.subject Population dynamics en
dc.subject Reliability analysis en
dc.subject Structural optimization en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.other Genetic algorithms en
dc.subject.other Population statistics en
dc.subject.other Reliability en
dc.subject.other Optimal design en
dc.subject.other Structural optimization en
dc.title Competitive genetic algorithms with application to reliability optimal design en
heal.type conferenceItem en
heal.identifier.primary 10.1016/S0965-9978(03)00101-7 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0965-9978(03)00101-7 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract Competition is introduced among the populations of a number of genetic algorithms (GAs) having different sets of parameters. The aim is to calibrate the population size of the GAs by altering the resources of the system, i.e. the allocated computing time. The co-evolution of the different populations is controlled at the level of the union of populations, i.e. the metapopulation, on the basis of statistics and trends of the evolution of every population. Evolution dynamics improve the capacity of the optimization algorithm to find optimum solutions and results in statistically better designs as compared to the standard GA with any of the fixed parameters considered. The method is applied to the reliability based optimal design of simple trusses. Numerical results are presented and the robustness of the proposed algorithm is discussed. (C) 2003 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Advances in Engineering Software en
dc.identifier.doi 10.1016/S0965-9978(03)00101-7 en
dc.identifier.isi ISI:000185979200014 en
dc.identifier.volume 34 en
dc.identifier.issue 11-12 en
dc.identifier.spage 773 en
dc.identifier.epage 785 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής