HEAL DSpace

Computer-Aided Diagnosis of Carotid Atherosclerosis using Laws' Texture Features and a Hybrid Trained Neural Network

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mougiakakou, SGr en
dc.contributor.author Golemati, S en
dc.contributor.author Gousias, I en
dc.contributor.author Nikita, KS en
dc.contributor.author Nicolaides, AN en
dc.date.accessioned 2014-03-01T02:42:13Z
dc.date.available 2014-03-01T02:42:13Z
dc.date.issued 2003 en
dc.identifier.issn 05891019 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30871
dc.subject Carotid atherosclerosis en
dc.subject Classification en
dc.subject Genetic algorithms en
dc.subject Laws' texture en
dc.subject Neural networks en
dc.subject Ultrasound en
dc.subject.other Backpropagation en
dc.subject.other Computer aided diagnosis en
dc.subject.other Feature extraction en
dc.subject.other Genetic algorithms en
dc.subject.other Medical imaging en
dc.subject.other Neural networks en
dc.subject.other Statistics en
dc.subject.other Textures en
dc.subject.other Ultrasonics en
dc.subject.other Momentum en
dc.subject.other Pixels en
dc.subject.other Disease control en
dc.title Computer-Aided Diagnosis of Carotid Atherosclerosis using Laws' Texture Features and a Hybrid Trained Neural Network en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEMBS.2003.1279484 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.2003.1279484 en
heal.publicationDate 2003 en
heal.abstract Objective diagnosis of carotid atherosclerosis and classification into symptomatic or asymptomatic is crucial in planning optimal treatment of atheromatous plaque. The Computer-Aided Diagnostic (CAD) system described in this paper can analyze B-mode ultrasound images of the carotid artery and classify them into Symptomatic (S) or Asymptomatic (A). Images from 54 S and 54 A plaques were fed to the CAD system, which consists of three modules: the feature extraction module, where texture features are estimated based on Laws' texture energy, the dimensionality reduction module, where the number of features is reduced using ANOVA statistics, and the classifier module with a Neural Network (NN) trained via a novel hybrid method in order to recognize the type of atheromatous plaques. The hybrid training method uses Genetic Algorithms (GA's) to locate a starting point close to the optimal solution, and then the back-propagation (BP) algorithm with adaptive learning rate and momentum to refine the NN configuration with local search. The hybrid method is able to select the most robust features, to adjust automatically the NN architecture, and to optimize the classification performance. The proposed CAD system has achieved a total classification performance of 99%. en
heal.journalName Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings en
dc.identifier.doi 10.1109/IEMBS.2003.1279484 en
dc.identifier.volume 2 en
dc.identifier.spage 1248 en
dc.identifier.epage 1251 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής