HEAL DSpace

Lattice fuzzy signal operators and generalized image gradients

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Maragos, P en
dc.contributor.author Tzouvaras, V en
dc.contributor.author Stamou, G en
dc.date.accessioned 2014-03-01T02:42:17Z
dc.date.available 2014-03-01T02:42:17Z
dc.date.issued 2003 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30907
dc.subject Edge Detection en
dc.subject Fuzzy Set en
dc.subject Image Analysis en
dc.subject Morphological Operation en
dc.subject Nonlinear Filter en
dc.subject Structure Function en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Convolution en
dc.subject.other Fuzzy control en
dc.subject.other Image analysis en
dc.subject.other Mathematical operators en
dc.subject.other Signal processing en
dc.subject.other Spurious signal noise en
dc.subject.other Fuzzy intersection en
dc.subject.other Image gradients en
dc.subject.other Image operators en
dc.subject.other Lattice fuzzy signal operators en
dc.subject.other Fuzzy sets en
dc.title Lattice fuzzy signal operators and generalized image gradients en
heal.type conferenceItem en
heal.identifier.primary 10.1007/3-540-44967-1_50 en
heal.identifier.secondary http://dx.doi.org/10.1007/3-540-44967-1_50 en
heal.language English en
heal.publicationDate 2003 en
heal.abstract In this paper we use concepts from the lattice-based theory of morphological operators and fuzzy sets to develop generalized lattice image operators that are nonlinear convolutions that can be expressed as supremum (resp. infimum) of fuzzy intersection (resp. union) norms. Our emphasis and differences with many previous works is the construction of pairs of fuzzy dilation (sup of fuzzy intersection) and erosion (inf of fuzzy implication) operators that form lattice adjunctions. This guarantees that their composition will be a valid algebraic opening or closing. We have experimented with applying these fuzzy operators to various nonlinear filtering and image analysis tasks, attempting to understand the effect that the type of fuzzy norm and the shape-size of structuring function have on the resulting new image operators. We also present some theoretical and experimental results on using the lattice fuzzy operators, in combination with morphological systems or by themselves, to develop some new edge detection gradients which show improved performance in noise. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) en
heal.bookName LECTURE NOTES IN ARTIFICIAL INTELLIGENCE en
dc.identifier.doi 10.1007/3-540-44967-1_50 en
dc.identifier.isi ISI:000185510700050 en
dc.identifier.volume 2715 en
dc.identifier.spage 420 en
dc.identifier.epage 427 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής