HEAL DSpace

Non-linear 3D rendering workload prediction based on a combined fuzzy-neural network architecture for grid computing applications

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, N en
dc.contributor.author Doulamis, A en
dc.date.accessioned 2014-03-01T02:42:18Z
dc.date.available 2014-03-01T02:42:18Z
dc.date.issued 2003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30923
dc.subject Computational Complexity en
dc.subject Computational Grid en
dc.subject Fuzzy Classification en
dc.subject Fuzzy Neural Network en
dc.subject Grid Computing en
dc.subject Industrial Application en
dc.subject Large Scale en
dc.subject Prediction Accuracy en
dc.subject Quality of Service en
dc.subject Resource Allocation en
dc.subject Scientific Research en
dc.subject Input Output en
dc.subject Neural Network en
dc.subject Neural Network Model en
dc.subject.other Algorithms en
dc.subject.other Bandwidth en
dc.subject.other Computational complexity en
dc.subject.other Fuzzy control en
dc.subject.other Multimedia systems en
dc.subject.other Quality of service en
dc.subject.other Resource allocation en
dc.subject.other Semantics en
dc.subject.other Grid computing applications en
dc.subject.other Rendering workloads en
dc.subject.other Neural networks en
dc.title Non-linear 3D rendering workload prediction based on a combined fuzzy-neural network architecture for grid computing applications en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICIP.2003.1247433 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICIP.2003.1247433 en
heal.publicationDate 2003 en
heal.abstract Although, computational Grid has been initially developed to solve large-scale scientific research problems, it is extended for commercial and industrial applications. An interesting commercial application with a wide impact on a variety of fields, is 3D rendering, In order to implement, however, 3D rendering to a grid infrastructure, we should develop appropriate scheduling and resource allocation mechanisms so that the negotiated Quality of Service (QoS) requirements are met. Efficient scheduling schemes require modeling and prediction of rendering workload. This is addressed in this paper, based on a combined fuzzy classification and neural network model. Initially, appropriate descriptors are extracted to represent the synthetic world. Fuzzy classification is used for organizing rendering descriptor so that a reliable representation is accomplished which increases the prediction accuracy. Neural network performs workload prediction by modeling the non-linear input-output relationship between rendering descriptors and the respective computational complexity. To increase the prediction accuracy, a constructive algorithm is adopted in this paper to train the neural network so that network weights and size are simultaneously estimated. en
heal.journalName IEEE International Conference on Image Processing en
dc.identifier.doi 10.1109/ICIP.2003.1247433 en
dc.identifier.volume 3 en
dc.identifier.spage 1069 en
dc.identifier.epage 1072 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής