dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T02:42:18Z |
|
dc.date.available |
2014-03-01T02:42:18Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0013-0915 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30929 |
|
dc.subject |
Clarke subdifferential |
en |
dc.subject |
Coercive functional |
en |
dc.subject |
Local linking |
en |
dc.subject |
Locally Lipschitz functional |
en |
dc.subject |
Non-smooth critical-point theory |
en |
dc.subject |
Non-smooth Palais-Smale condition |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
On the existence of multiple periodic solutions for equations driven by the p-Laplacian and with a non-smooth potential |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1017/S0013091502000159 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S0013091502000159 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
In this paper we examine periodic problems driven by the scalar p-Laplacian. Using non-smooth critical-point theory and a recent multiplicity result based on local linking (the original smooth version is due to Brezis and Nirenberg), we prove three multiplicity results, the third for semilinear problems with resonance at zero. We also study a quasilinear periodic eigenvalue problem with the parameter near resonance. We prove the existence of three distinct solutions, extending in this way a semilinear and smooth result of Mawhin and Schmitt. |
en |
heal.publisher |
CAMBRIDGE UNIV PRESS |
en |
heal.journalName |
Proceedings of the Edinburgh Mathematical Society |
en |
dc.identifier.doi |
10.1017/S0013091502000159 |
en |
dc.identifier.isi |
ISI:000183535600016 |
en |
dc.identifier.volume |
46 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
229 |
en |
dc.identifier.epage |
249 |
en |