HEAL DSpace

Parallel multi-focusing using plane wave decomposition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Misaridis, T en
dc.contributor.author Munk, P en
dc.contributor.author Jensen, JA en
dc.date.accessioned 2014-03-01T02:42:19Z
dc.date.available 2014-03-01T02:42:19Z
dc.date.issued 2003 en
dc.identifier.issn 10510117 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30934
dc.subject 3d imaging en
dc.subject Back Propagation en
dc.subject Evanescent Wave en
dc.subject Frequency Modulated en
dc.subject Numerical Solution en
dc.subject Phased Array en
dc.subject Plane Waves en
dc.subject Spectrum en
dc.subject Real Time en
dc.subject Single Carrier en
dc.subject Time Varying en
dc.subject.other Acoustic emissions en
dc.subject.other Acoustic wave propagation en
dc.subject.other Algorithms en
dc.subject.other Antenna phased arrays en
dc.subject.other Degrees of freedom (mechanics) en
dc.subject.other Focusing en
dc.subject.other Fourier transforms en
dc.subject.other Signal interference en
dc.subject.other Signal to noise ratio en
dc.subject.other Synthetic apertures en
dc.subject.other Optimal transmission schemes en
dc.subject.other Plane wave decomposition en
dc.subject.other Sensitivity functions en
dc.subject.other Single-carrier pulses en
dc.subject.other Ultrasonic imaging en
dc.title Parallel multi-focusing using plane wave decomposition en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ULTSYM.2003.1293206 en
heal.identifier.secondary http://dx.doi.org/10.1109/ULTSYM.2003.1293206 en
heal.publicationDate 2003 en
heal.abstract In conventional phased-array imaging, identical short single-carrier pulses are emitted from the entire aperture, and focusing is done in one direction at a time by applying simple geometric delays. This is a sequential and not optimal transmission scheme, which limits the frame rate and makes 3-D imaging in real-time impossible. By using a transmit matrix with frequency and apodization variations across the aperture, it is possible to focus in several directions simultaneously (5 or more), significantly increasing the frame rate to 170 frames/s or more. The algorithm used for the determination of the transmitted pulses is based on the directivity spectrum method, a generalization of the angular spectrum method, containing no evanescent waves. The underlying theory is based on the Fourier slice theorem, and field reconstruction from projections. First a set of desired 2-D sensitivity functions is specified, for multi-focusing in a number of directions. The field along these directions is decomposed to a sufficiently large (for accurate specification) number of plane waves, which are then back-propagated to all transducer elements. The contributions of all plane waves result in one time function per element. The numerical solution is presented and discussed. It contains pulses with a variation in central frequency, and time-varying apodization across the aperture (dynamic apodization). The RMS difference between the transmitted field using the calculated pulse excitation and a designed multi-focused field in 3 focal directions at a depth corresponding to an F-number of 1.5 is 4%, and it increases with depth. These results demonstrate the close agreement between specified and actual acoustic fields. It is, then, shown how specification of long frequency-modulated desired field functions can yield more strongly focused fields or higher number of multi-focused beams, with the additional advantage of higher SNR. en
heal.journalName Proceedings of the IEEE Ultrasonics Symposium en
dc.identifier.doi 10.1109/ULTSYM.2003.1293206 en
dc.identifier.volume 2 en
dc.identifier.spage 1565 en
dc.identifier.epage 1568 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής