HEAL DSpace

Reliability and cost optimization of power electronic devices considering the component failure rate uncertainty

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dialynas, EN en
dc.contributor.author Zafiropoulos, EP en
dc.date.accessioned 2014-03-01T02:42:20Z
dc.date.available 2014-03-01T02:42:20Z
dc.date.issued 2003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30948
dc.subject Failure rate uncertainty en
dc.subject Latin hypercube sampling method en
dc.subject Monte Carlo simulation en
dc.subject Optimization methods en
dc.subject Simulated annealing algorithm en
dc.subject System reliability en
dc.subject.other Failure rate en
dc.subject.other Latin hypercube sampling en
dc.subject.other Monte Carlo Simulation en
dc.subject.other Optimization method en
dc.subject.other Simulated annealing algorithms en
dc.subject.other System reliability en
dc.subject.other Electric power systems en
dc.subject.other Failure analysis en
dc.subject.other Optimization en
dc.subject.other Probability distributions en
dc.subject.other Monte Carlo methods en
dc.title Reliability and cost optimization of power electronic devices considering the component failure rate uncertainty en
heal.type conferenceItem en
heal.identifier.primary 10.1109/PTC.2003.1304733 en
heal.identifier.secondary http://dx.doi.org/10.1109/PTC.2003.1304733 en
heal.identifier.secondary 1304733 en
heal.publicationDate 2003 en
heal.abstract The objective of this paper is to present an efficient methodology to obtain the optimal system structure for power electronic devices using various component types, while considering the constraints on reliability and cost. The component failure rate uncertainty is taken under consideration and it is modeled with two alternative probability distribution functions. The Latin Hypercube Sampling method is used to simulate the probability distributions and the efficiency of this stratified sampling method is compared with the typical Monte Carlo analysis method. The optimization methodology being used was the simulated annealing algorithm because of its flexibility to be applied in various system types with various constraints and its efficiency in computational time. The developed methodology was applied to a power electronic device and the results were compared with the results of the complete enumeration of the solution space. The stochastic nature of the top solutions was sampled extensively and the robustness of the optimization methodology was demonstrated. Finally, a typical power electronic device is used as a case study and the obtained results are presented. © 2003 IEEE. en
heal.journalName 2003 IEEE Bologna PowerTech - Conference Proceedings en
dc.identifier.doi 10.1109/PTC.2003.1304733 en
dc.identifier.volume 4 en
dc.identifier.spage 275 en
dc.identifier.epage 281 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής