dc.contributor.author |
Zhang, Ch |
en |
dc.contributor.author |
Savaidis, A |
en |
dc.contributor.author |
Savaidis, G |
en |
dc.contributor.author |
Zhu, H |
en |
dc.date.accessioned |
2014-03-01T02:42:21Z |
|
dc.date.available |
2014-03-01T02:42:21Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0927-0256 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30966 |
|
dc.subject |
Dynamic crack analysis |
en |
dc.subject |
Dynamic fracture mechanics |
en |
dc.subject |
Functionally graded materials |
en |
dc.subject |
Impact loading |
en |
dc.subject |
Time-domain boundary integral equation method |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Crack initiation |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Fracture mechanics |
en |
dc.subject.other |
Galerkin methods |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Loads (forces) |
en |
dc.subject.other |
Stress intensity factors |
en |
dc.subject.other |
Transient dynamic analysis |
en |
dc.subject.other |
Functionally graded materials |
en |
dc.title |
Transient dynamic analysis of a cracked functionally graded material by a BIEM |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/S0927-0256(02)00395-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0927-0256(02)00395-6 |
en |
heal.language |
English |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
A hypersingular time-domain traction boundary integral equation method (BIEM) is presented for transient dynamic crack analysis in a functionally graded material (FGM). A finite crack in an infinite and linear elastic FGM subjected to an impact antiplane crack-face loading is investigated. The spatial variation of the materials constants is described by an exponential law. To solve the hypersingular time-domain traction BIE, a numerical solution procedure is developed. The numerical solution procedure uses a convolution quadrature formula for approximating the temporal convolution and a Galerkin method for the spatial discretization of the hypersingular time-domain traction BIE. Numerical examples are presented to show the effects of the materials gradients on the dynamic stress intensity factors. (C) 2002 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computational Materials Science |
en |
dc.identifier.doi |
10.1016/S0927-0256(02)00395-6 |
en |
dc.identifier.isi |
ISI:000181166100021 |
en |
dc.identifier.volume |
26 |
en |
dc.identifier.issue |
SUPPL. |
en |
dc.identifier.spage |
167 |
en |
dc.identifier.epage |
174 |
en |