HEAL DSpace

A meta-classifier approach for medical diagnosis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsirogiannis, GL en
dc.contributor.author Frossyniotis, D en
dc.contributor.author Nikita, KS en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T02:42:24Z
dc.date.available 2014-03-01T02:42:24Z
dc.date.issued 2004 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30986
dc.subject Diagnosis en
dc.subject Machine learning en
dc.subject Neural networks en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Algorithms en
dc.subject.other Computerized tomography en
dc.subject.other Data acquisition en
dc.subject.other Data reduction en
dc.subject.other Fuzzy sets en
dc.subject.other Learning systems en
dc.subject.other Problem solving en
dc.subject.other Trees (mathematics) en
dc.subject.other Tumors en
dc.subject.other Data collection en
dc.subject.other Data sets en
dc.subject.other Hepatic lesions en
dc.subject.other Meta-classifiers en
dc.subject.other Neural networks en
dc.title A meta-classifier approach for medical diagnosis en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-24674-9_17 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-24674-9_17 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract Single classifiers, such as Neural Networks, Support Vector Machines, Decision Trees and other, can be used to perform classification of data for relatively simple problems. For more complex problems, combinations of simple classifiers can significantly improve performance. There are several combination methods, like Bagging and Boosting that combine simple classifiers. We propose, here, a new meta-classifier approach which combines several different combination methods, in analogy to the combination of simple classifiers. The meta-classifier approach is employed in the implementation of a medical diagnosis system and evaluated using three benchmark diagnosis problems as well as a problem concerning the classification of hepatic lesions from computed tomography (CT) images. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/978-3-540-24674-9_17 en
dc.identifier.isi ISI:000221610800017 en
dc.identifier.volume 3025 en
dc.identifier.spage 154 en
dc.identifier.epage 163 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής