HEAL DSpace

A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sarimveis, H en
dc.contributor.author Alexandridis, A en
dc.contributor.author Mazarakis, S en
dc.contributor.author Bafas, G en
dc.date.accessioned 2014-03-01T02:42:24Z
dc.date.available 2014-03-01T02:42:24Z
dc.date.issued 2004 en
dc.identifier.issn 0098-1354 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/30993
dc.subject Dynamic modeling en
dc.subject Genetic algorithms en
dc.subject Model structure optimization en
dc.subject Radial basis functions en
dc.subject RBF networks en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Chemical en
dc.subject.other Computer simulation en
dc.subject.other Data acquisition en
dc.subject.other Error analysis en
dc.subject.other Genetic algorithms en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other Pulp en
dc.subject.other Paper industry en
dc.subject.other Neural networks en
dc.subject.other algorithm en
dc.subject.other neural network en
dc.subject.other algorithm en
dc.subject.other analytical error en
dc.subject.other computer model en
dc.subject.other conference paper en
dc.subject.other data base en
dc.subject.other genetic algorithm en
dc.subject.other information processing en
dc.subject.other nerve cell network en
dc.subject.other paper industry en
dc.subject.other prediction en
dc.subject.other process model en
dc.subject.other reactor en
dc.title A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms en
heal.type conferenceItem en
heal.identifier.primary 10.1016/S0098-1354(03)00169-8 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0098-1354(03)00169-8 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract A new method for extracting valuable process information from input-output data is presented in this paper. The proposed methodology produces dynamical radial basis function (RBF) neural network models based on a specially designed genetic algorithm (GA), which is used to auto-configure the structure of the networks and obtain the model parameters. The new RBF network training technique formulates a complete optimization problem, which includes the network structure into the set of free variables that are used to minimize the prediction error. This is a different approach compared with the local search methods employed by other structure selection mechanisms, which are often trapped to local minima. Another advantage of the proposed method is that only one run of the algorithm is required to obtain the optimal network structure, in contrast to the standard RBF training techniques, where the produced model is selected by trial and error. The effectiveness of the method is illustrated through the development of dynamical models for two sets of data: simulated data from a Continuous Stirred Tank Reactor (CSTR) and true data collected from a Kamyr digester, which is a rather complicated reactor used in the pulp and paper industry. (C) 2003 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Computers and Chemical Engineering en
dc.identifier.doi 10.1016/S0098-1354(03)00169-8 en
dc.identifier.isi ISI:000187895900020 en
dc.identifier.volume 28 en
dc.identifier.issue 1-2 en
dc.identifier.spage 209 en
dc.identifier.epage 217 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής