dc.contributor.author |
Kanellopoulos, V |
en |
dc.date.accessioned |
2014-03-01T02:42:25Z |
|
dc.date.available |
2014-03-01T02:42:25Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0002-9939 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30996 |
|
dc.subject |
Compact semigroups |
en |
dc.subject |
Idempotents |
en |
dc.subject |
Lipschitz functions |
en |
dc.subject |
Ultrafilters |
en |
dc.subject |
Variable words |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
RAMSEY THEORY |
en |
dc.subject.other |
SPACES |
en |
dc.title |
A proof of W. T. Gowers' c0 theorem |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1090/S0002-9939-04-07320-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1090/S0002-9939-04-07320-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
W.T. Gowers' c(0) theorem asserts that for every Lipschitz function F : S-c0 --> R and epsilon > 0, there exists an infinite-dimensional subspace Y of c(0) such that the oscillation of F on S-Y is at most epsilon. The proof of this theorem has been reduced by W. T. Gowers to the proof of a new Ramsey type theorem. Our aim is to present a proof of the last result. |
en |
heal.publisher |
AMER MATHEMATICAL SOC |
en |
heal.journalName |
Proceedings of the American Mathematical Society |
en |
dc.identifier.doi |
10.1090/S0002-9939-04-07320-4 |
en |
dc.identifier.isi |
ISI:000222815900012 |
en |
dc.identifier.volume |
132 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
3231 |
en |
dc.identifier.epage |
3242 |
en |