dc.contributor.author |
Pateritsas, C |
en |
dc.contributor.author |
Pertselakis, M |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:42:25Z |
|
dc.date.available |
2014-03-01T02:42:25Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
1062922X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/30999 |
|
dc.subject |
Classification |
en |
dc.subject |
Feature evaluation |
en |
dc.subject |
Neuro-fuzzy |
en |
dc.subject |
Self-organized map |
en |
dc.subject |
Structure-learning |
en |
dc.subject.other |
Classification |
en |
dc.subject.other |
Feature evaluation |
en |
dc.subject.other |
Neuro-fuzzy |
en |
dc.subject.other |
Self-Organized Maps (SOM) |
en |
dc.subject.other |
Structure-learning |
en |
dc.subject.other |
Classifiers |
en |
dc.subject.other |
Data acquisition |
en |
dc.subject.other |
Database systems |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Resource allocation |
en |
dc.subject.other |
Learning systems |
en |
dc.title |
A SOM-based classifier with enhanced structure learning |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICSMC.2004.1401296 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICSMC.2004.1401296 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
This paper introduces an innovative synergistic model that aims to improve the efficiency of a neuro-fiizzy classifier, providing the means of on-line adaptation and fast learning. It combines the advantages of a self-organized map (SOM) network, as well as the benefits of a structure allocation fuzzy neural network. The system initializes its parameters using the clustering result on the SOM structure, while a novel approach of evaluating the input features leads to a more efficient way of handling the on-line learning rate of the training process. Experimental results on benchmark classification problems showed that this robust combination can also tackle tasks of great dimensionality in a successful manner. © 2004 IEEE. |
en |
heal.journalName |
Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics |
en |
dc.identifier.doi |
10.1109/ICSMC.2004.1401296 |
en |
dc.identifier.volume |
5 |
en |
dc.identifier.spage |
4832 |
en |
dc.identifier.epage |
4837 |
en |