HEAL DSpace

Adaptive multimedia content personalization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, ND en
dc.contributor.author Georgilakis, P en
dc.date.accessioned 2014-03-01T02:42:26Z
dc.date.available 2014-03-01T02:42:26Z
dc.date.issued 2004 en
dc.identifier.issn 02714310 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31006
dc.subject Cross Correlation en
dc.subject Functional Analysis en
dc.subject Human Perception en
dc.subject Interactive Multimedia en
dc.subject linear functionals en
dc.subject Multimedia Data en
dc.subject Relevance Feedback en
dc.subject Similarity Measure en
dc.subject User Preferences en
dc.subject.other Average normalized modified retrieval rank (ANMRR) en
dc.subject.other Content-based retrieval (CBIR) systems en
dc.subject.other Learning techniques en
dc.subject.other Motion picture expert group (MPEG) en
dc.subject.other Algorithms en
dc.subject.other Computer simulation en
dc.subject.other Content based retrieval en
dc.subject.other Correlation methods en
dc.subject.other Feedback en
dc.subject.other Image analysis en
dc.subject.other Iterative methods en
dc.subject.other Lagrange multipliers en
dc.subject.other Motion pictures en
dc.subject.other Perturbation techniques en
dc.subject.other Radio broadcasting en
dc.subject.other Television broadcasting en
dc.subject.other Vectors en
dc.subject.other Multimedia systems en
dc.title Adaptive multimedia content personalization en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ISCAS.2004.1329240 en
heal.identifier.secondary http://dx.doi.org/10.1109/ISCAS.2004.1329240 en
heal.publicationDate 2004 en
heal.abstract Modeling multimedia content by identifying semantically meaningful entities can be arduous because it is difficult to simulate human perception. However, by creating an algorithm to respond interactively to user preference, content-retrieval systems can become more efficient and easier to use. In this paper, we investigate adaptive relevance feedback algorithms for interactive multimedia content personalization. In particular two interesting scenarios are examined. The first uses a weighted cross correlation similarity measure for ranking multimedia data. The second exploits concepts of functional analysis to model the similarity measure as a non-linear function, the type of which is estimated by the users' preferences. The algorithms are computationally efficient and they can be recursively implemented. en
heal.journalName Proceedings - IEEE International Symposium on Circuits and Systems en
dc.identifier.doi 10.1109/ISCAS.2004.1329240 en
dc.identifier.volume 2 en
dc.identifier.spage II189 en
dc.identifier.epage II192 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής