dc.contributor.author |
Mamalis, AG |
en |
dc.contributor.author |
Vottea, IN |
en |
dc.contributor.author |
Manolakos, DE |
en |
dc.date.accessioned |
2014-03-01T02:42:29Z |
|
dc.date.available |
2014-03-01T02:42:29Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0255-5476 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31021 |
|
dc.subject |
Explosive Cladding |
en |
dc.subject |
Explosive Compaction |
en |
dc.subject |
Finite Element |
en |
dc.subject |
Numerical Simulation |
en |
dc.subject |
Superconductors |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.other |
Explosive cladding |
en |
dc.subject.other |
Explosive compaction |
en |
dc.subject.other |
Metal composites |
en |
dc.subject.other |
Shock-wave propagation |
en |
dc.subject.other |
Solid-state reaction |
en |
dc.subject.other |
Cladding (coating) |
en |
dc.subject.other |
Compaction |
en |
dc.subject.other |
Composition |
en |
dc.subject.other |
Explosives |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
High temperature effects |
en |
dc.subject.other |
Microstructure |
en |
dc.subject.other |
Numerical analysis |
en |
dc.subject.other |
Powder metals |
en |
dc.subject.other |
Thickness measurement |
en |
dc.subject.other |
Superconducting materials |
en |
dc.title |
Application of explicit FE techniques on the explosive compaction/cladding of high-temperature superconductors |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.4028/www.scientific.net/MSF.465-466.101 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.4028/www.scientific.net/MSF.465-466.101 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In the present paper, we report on experimental and numerical investigations into the explosive compaction/cladding for fabricating superconducting YBCO ceramic/metal composite grooved discs and rods. The compaction process was simulated macromechanically by using an explicit 3D finite element code, namely LS-DYNA3D. The numerical techniques can lead to a better understanding of the compaction mechanisms and reveal details, which are difficult to obtain experimentally. The final dimensions of the compacts and the pressure and temperature distributions during the entire process are predicted. The comparison of the obtained numerical results and the experimental measurements provided the validation of the proposed model. |
en |
heal.publisher |
TRANS TECH PUBLICATIONS LTD |
en |
heal.journalName |
Materials Science Forum |
en |
heal.bookName |
MATERIALS SCIENCE FORUM |
en |
dc.identifier.doi |
10.4028/www.scientific.net/MSF.465-466.101 |
en |
dc.identifier.isi |
ISI:000224075900015 |
en |
dc.identifier.volume |
465-466 |
en |
dc.identifier.spage |
101 |
en |
dc.identifier.epage |
106 |
en |