dc.contributor.author |
Kavallaris, NI |
en |
dc.date.accessioned |
2014-03-01T02:42:30Z |
|
dc.date.available |
2014-03-01T02:42:30Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0013-0915 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31023 |
|
dc.subject |
Asymptotic behaviour |
en |
dc.subject |
Blow-up |
en |
dc.subject |
Non-local parabolic problems |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
VARIABLE THERMAL-CONDUCTIVITY |
en |
dc.subject.other |
GLOBAL-SOLUTIONS |
en |
dc.subject.other |
EQUATIONS |
en |
dc.subject.other |
BOUNDEDNESS |
en |
dc.title |
Asymptotic behaviour and blow-up for a nonlinear diffusion problem with a non-local source term |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1017/S0013091503000658 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S0013091503000658 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this work, the behaviour of solutions for the Dirichlet problem of the non-local equation u(t) = Delta(kappa(u)) + lambdaf(u)/(integral(Omega)f(u) dx)(p) , Omega subset of R-N, N = 1, 2, is studied, mainly for the case where f(s) = e(kappa)((s)). More precisely, the interplay of exponent p of the non-local term and spatial dimension N is investigated with regard to the existence and non-existence of solutions of the associated steady-state problem as well as the global existence and finite-time blow-up of the time-dependent solutions u(x, t). The asymptotic stability of the steady-state solutions is also studied. |
en |
heal.publisher |
CAMBRIDGE UNIV PRESS |
en |
heal.journalName |
Proceedings of the Edinburgh Mathematical Society |
en |
dc.identifier.doi |
10.1017/S0013091503000658 |
en |
dc.identifier.isi |
ISI:000222857300010 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
375 |
en |
dc.identifier.epage |
395 |
en |