HEAL DSpace

Automated medical image registration using the simulated annealing algorithm

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Maglogiannis, I en
dc.contributor.author Zafiropoulos, E en
dc.date.accessioned 2014-03-01T02:42:30Z
dc.date.available 2014-03-01T02:42:30Z
dc.date.issued 2004 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31024
dc.subject Correlation Coefficient en
dc.subject Image Alignment en
dc.subject Medical Image en
dc.subject Optimal Solution en
dc.subject Optimization Problem en
dc.subject Simulated Annealing Algorithm en
dc.subject Ultrasound en
dc.subject X Rays en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Correlation coefficient en
dc.subject.other Image registration en
dc.subject.other Optimal solutions en
dc.subject.other Simulated annealing algorithms en
dc.subject.other Algorithms en
dc.subject.other Automation en
dc.subject.other Dermatology en
dc.subject.other Image analysis en
dc.subject.other Image communication systems en
dc.subject.other Optimization en
dc.subject.other Simulated annealing en
dc.subject.other Ultrasonic applications en
dc.subject.other Medical imaging en
dc.title Automated medical image registration using the simulated annealing algorithm en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-24674-9_48 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-24674-9_48 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract This paper presents a robust, automated registration algorithm, which may be applied to several types of medical images, including CTs, MRIs, X-rays, Ultrasounds and dermatological images. The proposed algorithm is intended for imaging modalities depicting primarily morphology of objects i.e. tumors, bones, cysts and lesions that are characterized by translation, scaling and rotation. An efficient deterministic algorithm is used in order to decouple these effects by transforming images into the log-polar Fourier domain. Then, the correlation coefficient function criterion is employed and the corresponding values of scaling and rotation are detected. Due to the non-linearity of the correlation coefficient function criterion and the heavy computational effort required for its full enumeration, this optimization problem is solved using an efficient simulated annealing algorithm. After the images alignment in scaling and rotation, the simulated annealing algorithm is employed again, in order to detect the remaining values of the horizontal and vertical shifting. The proposed algorithm was tested using different initialization schemes and resulted in fast convergence to the optimal solutions independently of the initial points. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/978-3-540-24674-9_48 en
dc.identifier.isi ISI:000221610800048 en
dc.identifier.volume 3025 en
dc.identifier.spage 456 en
dc.identifier.epage 465 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής