HEAL DSpace

Characterization of carotid atherosclerosis based on motion and texture features and clustering using fuzzy c-means

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stoitsis, J en
dc.contributor.author Golemati, S en
dc.contributor.author Nikita, KS en
dc.contributor.author Nicolaides, AN en
dc.date.accessioned 2014-03-01T02:42:32Z
dc.date.available 2014-03-01T02:42:32Z
dc.date.issued 2004 en
dc.identifier.issn 05891019 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31033
dc.subject Carotid atherosclerosis en
dc.subject Fuzzy c-means en
dc.subject Motion en
dc.subject Texture en
dc.subject Ultrasound en
dc.subject.other Computer aided diagnosis en
dc.subject.other Diseases en
dc.subject.other Feature extraction en
dc.subject.other Fuzzy sets en
dc.subject.other Image processing en
dc.subject.other Medical imaging en
dc.subject.other Statistical methods en
dc.subject.other Textures en
dc.subject.other Visualization en
dc.subject.other Cartoid atherosclerosis en
dc.subject.other Fuzzy c-means en
dc.subject.other Maximal surface velocity (MSV) en
dc.subject.other Motion patterns en
dc.subject.other Ultrasonic imaging en
dc.title Characterization of carotid atherosclerosis based on motion and texture features and clustering using fuzzy c-means en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEMBS.2004.1403437 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.2004.1403437 en
heal.publicationDate 2004 en
heal.abstract Analysis of B-mode ultrasound images of the carotid atheromatous plaque includes the estimation of texture from static images and the estimation of motion from image sequences. The combination of these two types of information may be valuable for accurate diagnosis of vascular disease. The purpose of this paper was to study texture and motion patterns of carotid atherosclerosis and select the optimal combination of features that can characterize plaque. B-mode ultrasound images of 10 symptomatic and 9 asymptomatic plaques were interrogated. A total of 99 texture features were estimated using first-order statistics, second-order statistics, Laws texture energy and the fractal dimension. Only five texture features were significantly different between the two groups. In the same subjects, the motion of selected plaque regions was estimated using region tracking and block-matching and expressed through: a/maximal surface velocity (MSV), and b/maximal relative surface velocity (MRSV). MSV and MRSV were significantly lower in asymptomatic plaques suggesting more homogeneous motion patterns. Clustering using fuzzy c-means correctly classified 74% of plaques based on texture features only, and 79% of plaques based on motion features only. Classification performance reached 84% when a combination of motion and texture features was used. en
heal.journalName Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings en
dc.identifier.doi 10.1109/IEMBS.2004.1403437 en
dc.identifier.volume 26 II en
dc.identifier.spage 1407 en
dc.identifier.epage 1410 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής