dc.contributor.author |
Tsirogiannis, GL |
en |
dc.contributor.author |
Frossyniotis, D |
en |
dc.contributor.author |
Stoitsis, J |
en |
dc.contributor.author |
Golemati, S |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.date.accessioned |
2014-03-01T02:42:32Z |
|
dc.date.available |
2014-03-01T02:42:32Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
10987576 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31034 |
|
dc.subject |
Computer Aided Diagnosis |
en |
dc.subject |
Medical Diagnosis |
en |
dc.subject |
Support Vector Machine |
en |
dc.subject |
Decision Tree |
en |
dc.subject |
Neural Network |
en |
dc.subject.other |
Decision trees |
en |
dc.subject.other |
Intelligent classifiers |
en |
dc.subject.other |
Multi-layered feed-forward neural networks |
en |
dc.subject.other |
Support vector machines (SVM) |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Decision theory |
en |
dc.subject.other |
Error analysis |
en |
dc.subject.other |
Feedforward neural networks |
en |
dc.subject.other |
Multilayer neural networks |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Reliability |
en |
dc.subject.other |
Computer aided diagnosis |
en |
dc.title |
Classification of medical data with a robust multi-level combination scheme |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IJCNN.2004.1381020 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IJCNN.2004.1381020 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Computer Aided Diagnosis is based on classification of medical data by intelligent classifiers. Especially for medical purposes, the classification must be very efficient, as diagnosis demands a high rate of reliability. Under most circumstances, single classifiers, such as Neural Networks, Support Vector Machines and Decision Trees, exhibit worse performance than ensemble combinations of them, as Bagging and Boosting are. In order to further enhance performance, we propose here a combination of these combination methods in a multi-level combination scheme. After experimentation by using four medical diagnosis problems, the proposed approach seems to be efficient in decreasing the error, compared to the best combining method standalone. |
en |
heal.journalName |
IEEE International Conference on Neural Networks - Conference Proceedings |
en |
dc.identifier.doi |
10.1109/IJCNN.2004.1381020 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.spage |
2483 |
en |
dc.identifier.epage |
2487 |
en |