HEAL DSpace

Classification of medical data with a robust multi-level combination scheme

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsirogiannis, GL en
dc.contributor.author Frossyniotis, D en
dc.contributor.author Stoitsis, J en
dc.contributor.author Golemati, S en
dc.contributor.author Stafylopatis, A en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:42:32Z
dc.date.available 2014-03-01T02:42:32Z
dc.date.issued 2004 en
dc.identifier.issn 10987576 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31034
dc.subject Computer Aided Diagnosis en
dc.subject Medical Diagnosis en
dc.subject Support Vector Machine en
dc.subject Decision Tree en
dc.subject Neural Network en
dc.subject.other Decision trees en
dc.subject.other Intelligent classifiers en
dc.subject.other Multi-layered feed-forward neural networks en
dc.subject.other Support vector machines (SVM) en
dc.subject.other Algorithms en
dc.subject.other Decision theory en
dc.subject.other Error analysis en
dc.subject.other Feedforward neural networks en
dc.subject.other Multilayer neural networks en
dc.subject.other Probability en
dc.subject.other Reliability en
dc.subject.other Computer aided diagnosis en
dc.title Classification of medical data with a robust multi-level combination scheme en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IJCNN.2004.1381020 en
heal.identifier.secondary http://dx.doi.org/10.1109/IJCNN.2004.1381020 en
heal.publicationDate 2004 en
heal.abstract Computer Aided Diagnosis is based on classification of medical data by intelligent classifiers. Especially for medical purposes, the classification must be very efficient, as diagnosis demands a high rate of reliability. Under most circumstances, single classifiers, such as Neural Networks, Support Vector Machines and Decision Trees, exhibit worse performance than ensemble combinations of them, as Bagging and Boosting are. In order to further enhance performance, we propose here a combination of these combination methods in a multi-level combination scheme. After experimentation by using four medical diagnosis problems, the proposed approach seems to be efficient in decreasing the error, compared to the best combining method standalone. en
heal.journalName IEEE International Conference on Neural Networks - Conference Proceedings en
dc.identifier.doi 10.1109/IJCNN.2004.1381020 en
dc.identifier.volume 3 en
dc.identifier.spage 2483 en
dc.identifier.epage 2487 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής