dc.contributor.author |
Karali, E |
en |
dc.contributor.author |
Asvestas, P |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.contributor.author |
Matsopoulos, GK |
en |
dc.date.accessioned |
2014-03-01T02:42:32Z |
|
dc.date.available |
2014-03-01T02:42:32Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31039 |
|
dc.subject |
Cross Correlation |
en |
dc.subject |
Mutual Information |
en |
dc.subject |
Optimization Technique |
en |
dc.subject |
Quantitative Evaluation |
en |
dc.subject |
Retinal Imaging |
en |
dc.subject |
Similarity Measure |
en |
dc.subject |
Statistical Test |
en |
dc.subject |
Gold Standard |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Angiography |
en |
dc.subject.other |
Blood vessels |
en |
dc.subject.other |
Diseases |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Ophthalmology |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Eye vessels |
en |
dc.subject.other |
Image registration |
en |
dc.subject.other |
Mutual information |
en |
dc.subject.other |
Retinal images |
en |
dc.subject.other |
Medical imaging |
en |
dc.title |
Comparison of different global and local automatic registration schemes: An application to retinal images |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-30135-6_99 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-30135-6_99 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this paper, different global and local automatic registration schemes are compared in terms of accuracy and efficiency. The accuracy of different optimization strategies based on a variety of similarity measures (cross-correlation, mutual information coefficient or chamfer distance) is assessed by means of statistical tests. Results from every optimization procedure are quantitatively evaluated with respect to the gold-standard (manual) registration. The comparison has shown that chamfer distance is a robust and fast similarity measure that can be successfully combined with common optimization techniques in retinal image registration applications. © Springer-Verlag Berlin Heidelberg 2004. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Computer Science |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/978-3-540-30135-6_99 |
en |
dc.identifier.isi |
ISI:000224321100099 |
en |
dc.identifier.volume |
3216 |
en |
dc.identifier.issue |
PART 1 |
en |
dc.identifier.spage |
813 |
en |
dc.identifier.epage |
820 |
en |