HEAL DSpace

Data reduction techniques for the analysis and interpretation of dynamic FDG-PET oncological studies

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kontaxakis, G en
dc.contributor.author Thireou, T en
dc.contributor.author Pavlopoulos, S en
dc.contributor.author Santos, A en
dc.date.accessioned 2014-03-01T02:42:33Z
dc.date.available 2014-03-01T02:42:33Z
dc.date.issued 2004 en
dc.identifier.issn 10957863 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31045
dc.subject Data Reduction en
dc.subject Data Reduction Techniques en
dc.subject Image Sequence en
dc.subject Kinetic Model en
dc.subject Kinetics en
dc.subject Positron Emission Tomography en
dc.subject Principal Component Analysis en
dc.subject Similarity Measure en
dc.subject Standardized Uptake Value en
dc.subject Visual Analysis en
dc.subject Arterial Input Function en
dc.subject Time Activity Curve en
dc.subject.other Image sequences en
dc.subject.other Standardized uptake values (SUV) en
dc.subject.other Visual analysis en
dc.subject.other Diagnosis en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Image reconstruction en
dc.subject.other Information retrieval en
dc.subject.other Mapping en
dc.subject.other Matrix algebra en
dc.subject.other Oncology en
dc.subject.other Parameter estimation en
dc.subject.other Positron emission tomography en
dc.subject.other Principal component analysis en
dc.subject.other Tumors en
dc.subject.other Data reduction en
dc.title Data reduction techniques for the analysis and interpretation of dynamic FDG-PET oncological studies en
heal.type conferenceItem en
heal.identifier.primary 10.1109/NSSMIC.2004.1466678 en
heal.identifier.secondary http://dx.doi.org/10.1109/NSSMIC.2004.1466678 en
heal.identifier.secondary M9-339 en
heal.publicationDate 2004 en
heal.abstract Dynamic positron emission tomography studies produce a large amount of image data, from which clinically useful parametric information can be extracted with the use of tracer kinetic methods. In order to facilitate the initial interpretation and visual analysis of these large image sequences, data reduction methods can be applied which at the same time maintain important information and allow basic feature characterization. We show here that the application of principal component analysis can provide high-contrast parametric image sets of lesser dimension than the original ones separating structures with different kinetic characteristics. This method has been shown to be an alternative quantification method, independent of any kinetic model and particularly useful when the retrieval of the arterial input function is complicated. Furthermore, novel similarity mapping techniques are proposed, which can summarize in a single image the temporary properties of the whole image sequence according to a reference region. Based on the newly introduced cubed sum coefficient similarity measure, we show that structures with similar time activity curves similar to the tumor's ones can be identified, thus facilitating the detection of lesions not easily discriminated with the conventional method using standardized uptake values. © 2004 IEEE. en
heal.journalName IEEE Nuclear Science Symposium Conference Record en
dc.identifier.doi 10.1109/NSSMIC.2004.1466678 en
dc.identifier.volume 6 en
dc.identifier.spage 3673 en
dc.identifier.epage 3677 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής