dc.contributor.author |
Jobic, H |
en |
dc.contributor.author |
Makrodimitris, K |
en |
dc.contributor.author |
Papadopoulos, GK |
en |
dc.contributor.author |
Schober, H |
en |
dc.contributor.author |
Theodorou, DN |
en |
dc.date.accessioned |
2014-03-01T02:42:36Z |
|
dc.date.available |
2014-03-01T02:42:36Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0167-2991 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31053 |
|
dc.subject |
CO2 |
en |
dc.subject |
Diffusion |
en |
dc.subject |
MD simulations |
en |
dc.subject |
N2 |
en |
dc.subject |
QENS |
en |
dc.subject |
Silicalite |
en |
dc.subject.classification |
Chemistry, Physical |
en |
dc.subject.other |
carbon dioxide |
en |
dc.subject.other |
nitrogen |
en |
dc.subject.other |
silicalite |
en |
dc.subject.other |
silicon dioxide |
en |
dc.subject.other |
unclassified drug |
en |
dc.subject.other |
zeolite |
en |
dc.subject.other |
adsorption |
en |
dc.subject.other |
conference paper |
en |
dc.subject.other |
crystal |
en |
dc.subject.other |
diffusion |
en |
dc.subject.other |
energy |
en |
dc.subject.other |
molecular dynamics |
en |
dc.subject.other |
molecular interaction |
en |
dc.subject.other |
molecular simulation |
en |
dc.subject.other |
neutron scattering |
en |
dc.subject.other |
simulation |
en |
dc.subject.other |
temperature |
en |
dc.title |
Diffusivities of CO2 and N2 in silicalite, comparison between quasi-elastic neutron scattering and molecular simulations |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/S0167-2991(04)80746-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0167-2991(04)80746-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
The diffusion of nitrogen and carbon dioxide adsorbed in silicalite has been characterized by quasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulations. Single components were studied at various loadings and temperatures. Transport diffusivities of the two gases, as obtained experimentally and theoretically, are in good agreement. It is found by both techniques that the corrected diffusivities are not constant; they tend to increase for N-2 and decrease for CO2, with increasing occupancy. This is probably due to different intermolecular interactions. The activation energies for diffusion for N-2 and CO2, derived from QENS and simulations, are remarkably close. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Studies in Surface Science and Catalysis |
en |
heal.bookName |
STUDIES IN SURFACE SCIENCE AND CATALYSIS |
en |
dc.identifier.doi |
10.1016/S0167-2991(04)80746-8 |
en |
dc.identifier.isi |
ISI:000227357201124 |
en |
dc.identifier.volume |
154 B |
en |
dc.identifier.spage |
2056 |
en |
dc.identifier.epage |
2061 |
en |