HEAL DSpace

Fuzzy automata for fault diagnosis: A syntactic analysis approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Rigatos, GG en
dc.contributor.author Tzafestas, SG en
dc.date.accessioned 2014-03-01T02:42:47Z
dc.date.available 2014-03-01T02:42:47Z
dc.date.issued 2004 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31077
dc.subject Case Study en
dc.subject Dc Motor en
dc.subject Fault Diagnosis en
dc.subject Fuzzy Membership Function en
dc.subject Monitoring System en
dc.subject Normal Operator en
dc.subject Syntactic Analysis en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Automata theory en
dc.subject.other DC motors en
dc.subject.other Electrocardiography en
dc.subject.other Functions en
dc.subject.other Mathematical models en
dc.subject.other Pattern recognition en
dc.subject.other Set theory en
dc.subject.other Theorem proving en
dc.subject.other Fault diagnosis en
dc.subject.other Fault patterns en
dc.subject.other Fuzzy automata en
dc.subject.other Fuzzy sets en
dc.title Fuzzy automata for fault diagnosis: A syntactic analysis approach en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-24674-9_32 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-24674-9_32 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract Fuzzy automata are proposed for fault diagnosis. The output of the monitored system is partitioned into linear segments which are assigned to pattern classes (templates) with the use of fuzzy membership functions. A sequence of templates is generated and becomes input to fuzzy automata which have transitions that correspond to the templates of the properly functioning system. If the automata reach their final states, i.e. the input sequence is accepted by the automata with a membership degree that exceeds a certain threshold, then normal operation is deduced, otherwise, a failure is diagnosed. Fault diagnosis of a DC motor and detection of abnormalities in the ECG signal are used as case studies. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/978-3-540-24674-9_32 en
dc.identifier.isi ISI:000221610800032 en
dc.identifier.volume 3025 en
dc.identifier.spage 301 en
dc.identifier.epage 310 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής