dc.contributor.author |
Rigatos, GG |
en |
dc.contributor.author |
Tzafestas, SG |
en |
dc.date.accessioned |
2014-03-01T02:42:47Z |
|
dc.date.available |
2014-03-01T02:42:47Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31077 |
|
dc.subject |
Case Study |
en |
dc.subject |
Dc Motor |
en |
dc.subject |
Fault Diagnosis |
en |
dc.subject |
Fuzzy Membership Function |
en |
dc.subject |
Monitoring System |
en |
dc.subject |
Normal Operator |
en |
dc.subject |
Syntactic Analysis |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Automata theory |
en |
dc.subject.other |
DC motors |
en |
dc.subject.other |
Electrocardiography |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Set theory |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Fault diagnosis |
en |
dc.subject.other |
Fault patterns |
en |
dc.subject.other |
Fuzzy automata |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.title |
Fuzzy automata for fault diagnosis: A syntactic analysis approach |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-24674-9_32 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-24674-9_32 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Fuzzy automata are proposed for fault diagnosis. The output of the monitored system is partitioned into linear segments which are assigned to pattern classes (templates) with the use of fuzzy membership functions. A sequence of templates is generated and becomes input to fuzzy automata which have transitions that correspond to the templates of the properly functioning system. If the automata reach their final states, i.e. the input sequence is accepted by the automata with a membership degree that exceeds a certain threshold, then normal operation is deduced, otherwise, a failure is diagnosed. Fault diagnosis of a DC motor and detection of abnormalities in the ECG signal are used as case studies. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science) |
en |
heal.bookName |
LECTURE NOTES IN COMPUTER SCIENCE |
en |
dc.identifier.doi |
10.1007/978-3-540-24674-9_32 |
en |
dc.identifier.isi |
ISI:000221610800032 |
en |
dc.identifier.volume |
3025 |
en |
dc.identifier.spage |
301 |
en |
dc.identifier.epage |
310 |
en |